试题

题目:
青果学院(2012·南开区二模)如图,设计建造一条道路,路基的横断面为梯形ABCD,设路基高为h,两侧的坡角分别为α、β.已知h=2米,α=45°,tanβ=
1
2
,CD=10米.求路基底部AB的宽.
答案
青果学院解:过D作DE⊥AB于E,过C作CF⊥AB于F.
Rt△ADE中,∠α=45°,DE=h=2米,
∴CF=DE=h=2(米).
Rt△BCF中,tanβ=
1
2
,CF=h=2(米),
∴BF=2CF=4(米).
故AB=AE+EF+BF=AE+CD+BF=2+10+4=16(米).
答:路基底部AB的宽为16米.
青果学院解:过D作DE⊥AB于E,过C作CF⊥AB于F.
Rt△ADE中,∠α=45°,DE=h=2米,
∴CF=DE=h=2(米).
Rt△BCF中,tanβ=
1
2
,CF=h=2(米),
∴BF=2CF=4(米).
故AB=AE+EF+BF=AE+CD+BF=2+10+4=16(米).
答:路基底部AB的宽为16米.
考点梳理
解直角三角形的应用-坡度坡角问题.
分别过D、C作下底AB的垂线,设垂足为E、F.在Rt△ADE和Rt△BCF中,可根据h的长以及坡角的度数或坡比的值,求出AE、BF的长,进而可求得AB的值.
此题主要考查了坡度问题的应用,坡度、坡角问题通常要转换为解直角三角形的问题,必要时应添加辅助线,构造出直角三角形.
找相似题