数学
如图,利用长为18米的墙,用篱笆围成一个矩形场地ABCD,且AD<AB,设AD长为x米,矩形的面积为S平方米.
(1)若篱笆的长为36米,求S与x的函数关系式,并直接写出自变量x的取值范围;
(2)在(1)的条件下,若矩形场地的面积为160平方米,求出此时AD的长.
如图,一块草地是长80m、宽60m的矩形,欲在中间修筑两条互相垂直的宽为x m的小路,这时草坪面积为y m
2
.求y与x的函数关系式,并写出自变量x的取值范围.
如图所示,某农户想建造一花圃,用来种植两种不同的花卉,以供应城镇市场需要,现用长为36m的篱笆,一面砌墙(墙的最大可使用长度l=13m),围成中间隔有一道篱笆的长方形花圃,设花圃宽AB为x,面积为S.
(1)求S与x的函数关系式.
(2)若要围成面积为96m
2
的花圃,求宽AB的长度.
(3)花圃的面积能达到108m
2
吗?若能,请求出AB的长度,若不能请说明理由.
如图所示,等腰直角三角形△ABC的直角边AB=2,点P、Q分别从A、C两点同时出发,以相等的速度做直线运动,已知点P沿射线AB运动,点Q沿边BC的延长线运动,PQ与直线AC相交于点D.
(1)设AP的长为x,△PCQ的面积为S,求出S关于x的函数关系式.
(2)当AP的长为何值时S
△PCQ
=S
△ABC
.
某商店经销一批小家电,每个小家电的成本为40元.据市场分析,销售单价定为50元时,一个月能售出500件;若销售单价每涨1元,月销售量就减少10件.针对这种小家电的销售情况,请回答以下问题:
(1)设销售单价定为x元(x>50),月销售利润为y元,求y(用含x的代数式表示);
(2)现该商店要保证每月盈利8750元,同时又要使顾客得到尽可能多的实惠,那么销售单价应定为多少元?
如图,在Rt△ABC中,∠C=90°,AC=12mm,BC=24mm,动点P从点A开始沿边AC向C以2mm/s的速度移动,动点Q从点C开始沿边CB向B以4mm/s的速度移动.如果P、Q两点同时出发,那么△PCQ的面积S随出发时间t如何变化?写出函数关系式及t的取值范围.
圆的半径为3,若半径增加x,则面积增加y.求y与x的函数关系式.
某厂要制造能装250mL(1mL=1cm
3
)饮料的铝制圆柱形易拉罐,易拉罐的侧壁厚度和底部厚度都是0.02cm,顶部厚度是底部厚度的3倍,这是为了防止“砰”的一声打开易拉罐时把整个顶盖撕下来,设一个底面半径是x cm的易拉罐用铝量是y cm
3
.用铝量=底面积×底部厚度+顶部面积×顶部厚度+侧面积×侧壁厚度,求y与x间的函数关系式.
如图所示,在直角梯形ABCD中,∠A=∠D=90°,截取AE=BF=DG=x.已知AB=6,CD=3,AD=4.求四边形CGEF的面积S关于x的函数表达式和x的取值范围.
某广告公司设计一幅周长为12m的矩形广告牌,广告设计费为每平方米1000元,设矩形的一边长为x m,所花费用为y元.
(1)请你写出y与x之间的函数表达式,写出x的取值范围;
(2)估计当x取何值时,y有最大设计费用.
第一页
上一页
4
5
6
7
8
下一页
最后一页
165868
165870
165871
165873
165875
165877
165878
165880
165881
165884