数学
如图,在矩形ABCD中,AB=6厘米,BC=12厘米,点P从点A出发,沿边AB向点B以1厘米/秒的速度移动,同时,Q点从B点出发沿边BC向点C以2厘米/秒的速度移动,如果P、Q两点分别到达B、C两点后
就停止移动.据此解答下列问题:
(1)运动开始第几秒后,△PBQ的面积等于8平方厘米;
(2)设运动开始后第t秒时,五边形APQCD的面积为S平方厘米,写出S与t的函数关系式,并指出自变量的取值范围;
(3)求出S的最小值及t的对应值.
如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(-1,2).
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的表达式.
如图,已知抛物线与x轴交于A,B两点,A在B的左侧,A坐标为(-1,0)与y轴交于点C(0,3)△ABC的面积为6.
(1)求抛物线的解析式;
(2)抛物线的对称轴与直线BC相交于点M,点N为x轴上一点,当以M,N,B为顶点的三角形与△ABC相似时,请你求出BN的长度;
(3)设抛物线的顶点为D在线段BC上方的抛物线上是否存在点P使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.
如图,四边形ABCD是正方形,已知A(5,4),B(10,4):
(1)求点C、D的坐标;
(2)若一次函数y=kx+3(k≠0)的图象过C点,求k的值;
(3)在(2)的条件下,①若将直线l:y=kx+3向下平移a个单位,将正方形分为上下两部分的面积比为7:3,试求出a的值;②若将直线l:y=kx+3平移后与以A为圆心,AC为半径的圆相切,直接写出平移后的直线的解析式.
如图甲,直角梯形ABCD中,AD∥BC,∠BAD=∠B=90°,AD=AB=6cm,BC=8cm.点E从点A出发沿AD方向以1厘米/秒的速度向终点D运动;点F从点C出发沿CA方向以2厘米/秒的速度向终点A运动.当点E、F中有一点运动到终点时,另一点也随之停止.设运动的时间为t秒.
(1)当t为何值时,△AEF和△ACD相似?
(2)连接BF,随着点E、F的运动,四边形ABFE可能是直角梯形?若可能,请求出t的值;若不能,请说明理由;
(3)当t为何值时,△AFE的面积最大,最大值是多少?
三个全等的直角梯形①、②、③在平面直角坐标系中的位置如图所示,抛物线y=a
x
2
-bx-c经过梯形的顶点A、B、C、D,已知梯形的两条底边长分别为4,6.
(1)求梯形的两腰长;
(2)求抛物线的解析式.
已知:如图13m、n是方程x
2
-6x+5=0的两个实数根,且m<n,抛物线y=-x
2
+bx+c的图象经过点A(m,0)、B(0,n).
①求这个抛物线的解析式.
②设①中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积;(注:抛物线y=ax
2
+bx+c(a≠0)的顶点坐标为
(-
b
2a
,
4ac-
b
2
4a
)
)
如图,抛物线与x轴交于A(-2,0),B(6,0)两点,与y轴交于点C(0,-4).
(1)求抛物线的解析式;
(2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC于点N,连接CM,当△CMN的面积最大时,求点M的坐标;
(3)点D(4,k)在(1)中抛物线上,点F为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.
如图,已知半径为1的⊙O
1
与x轴交于A,B两点,OM为⊙O
1
的切线,切点为M,圆心O
1
的坐标为(2,0),二次函数y=-x
2
+bx+c的图象经过A,B两点.
(1)求二次函数的解析式.
(2)求出图中阴影部分的面积.
(3)求切线OM的函数解析式.
(4)线段OM上是否存在一点P,使得以P,O,A为顶点的三角形与△OO
1
M相似?若存在,请求出点P的坐标;若不存在,请说明理由.
如图,抛物线y=
4
9
x
2
-
8
3
x-12与x轴交于A、C两点,与y轴交于B点.
(1)求△AOB的外接圆的面积;
(2)若动点P从点A出发,以每秒2个单位沿射线AC方向运动;同时,点Q从点B出发,以每秒1个单位沿射线BA方向运动,当点P到达点C处时,两点同时停止运动.问当t为何值时,以A、P、Q为顶点的三角形与△OAB相似?
(3)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.
①是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
②当点M运动到何处时,四边形CBNA的面积最大?求出此时点M的坐标及四边形CBAN面积的最大值.
第一页
上一页
128
129
130
131
132
下一页
最后一页
168124
168126
168128
168130
168131
168133
168135
168137
168140
168143