数学
在直角坐标系中,y=x
2
+ax+2a与x轴交于A,B两点,点E(2,0)绕点O顺时针旋转90°后的对应点C在此抛物线上,点P(4,2).
(1)求抛物线解析式;
(2)如图1,点F是线段AC上一动点,作矩形FC
1
B
1
A
1
,使C
1
在CB上,B
1
,A
1
在AB上,设线段A
1
F的长为a,求矩形FC
1
B
1
A
1
的面积S与a的函数关系式,并求S的最大值;
(3)如图2,在(1)的抛物线上是否存在两个点M,N,使以O,M,N,P为顶点的四边形是平行四边形?若存在,求出点M,N的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,抛物线y=-x
2
+(m+1)x+3m与直线y=-x+3交于A、C两点;点P从原点O点出发,以每秒1个单位长度的速度沿OC向终点C运动,过P作x轴的垂线,交抛物线于D,交AC于
E,设点P运动的时间为x(秒),四边形AOCD的面积为S.
(1)求点A、C的坐标,并求此抛物线的解析式;
(2)求S关于x的函数关系式,并求出S的最大值;
(3)探究:是否存在点P,使直线AC把△PCD分成面积之比为2:1的两部分?若存在,求出此时点P的坐标;若不存在,请说明理由.
已知抛物线y=ax
2
-2ax+n(a>0)与x轴交于A(x
1
,0)、B(x
2
,0),交y轴的负半轴于点C,且x
1
<x
2
,OC=OB,S
△ABC
=6
(1)求此抛物线的解析式;
(2)若D为抛物线的顶点,P为抛物线上的点,且在第二象限,S
△PBD
=15,求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在点M,使△MBD为直角三角形?若存在,求出所有符合条件的M点坐标,若不存在,请说明理由.
如图,在平面直角坐标系中,已知点A坐标为(2,4),AB⊥x轴,垂足为点B,连接OA,抛物
线y=x
2
从点O沿OA方向平移,与直线AB交于点P,抛物线的顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式;
(2)设抛物线顶点M的横坐标为m,
①用m的代数式表示点P的坐标;
②当m为何值时,线段PB最短;并求出此时抛物线的解析式.
(3)在②前提下,在直线AB上是否存在点N,使△PMN是等腰三角形?若存在,直接写出满足条件的N点坐标;
(4)探究:当线段PB最短时,在相应的抛物线上是否存在点Q(与P不重合),使△QMA的面积与△PMA的面积相等?若存在,直接写出满足条件的点Q的坐标.
某抛物线是由抛物线y=-2x
2
向左平移2个单位得到.
(1)求抛物线的解析式,并画出此抛物线的大致图象;
(2)设抛物线的顶点为A,与y轴的交点为B.
①求线段AB的长及直线AB的解析式;
②在此抛物线的对称轴上是否存在点C,使△ABC为等腰三角形?若存在,求出这样的点C的坐标;若不存在,请说明理由.
已知抛物线y=ax
2
-2x+c与它的对称轴相交于点A(1,-4),与y轴交于C,与x轴正半轴交于B.
(1)求这条抛物线的函数关系式;
(2)设直线AC交x于D,P是直线AC上一动点,当△PBD的面积等于18时,求点P的坐标.
点A(4,m),B(n,-3)在直线y=x-5上.
(1)试求点A、点B坐标;
(2)若一抛物线过A,B且以y轴为对称轴,求该抛物线解析式;
(3)现有一开口向下,形状与(2)中抛物线相同的新抛物线沿x轴水平移动,交x轴于C,D两点(C左D右),且CD=3.试求当四边形ABCD周长最小时的新抛物线的解析式.
(2006·大连)如图,抛物线E:y=x
2
+4x+3交x轴于A、B两点,交y轴于M点,抛物线E关于y轴对称的抛物线F交x轴于C、D两点.
(1)求F的解析式;
(2)在x轴上方的抛物线F或E上是否存在一点N,使以A、C、N、M为顶点的四边
形是平行四边形?若存在,求点N的坐标;若不存在,请说明理由;
(3)若将抛物线E的解析式改为y=ax
2
+bx+c,试探索问题(2).
(2006·长春)如图,P为抛物线y=
3
4
x
2
-
3
2
x+
1
4
上对称轴右侧的一点,且点P在x轴上方,过点P作PA垂直x轴于点A,PB垂直y轴于点B,得到矩形PAOB.若AP=1,求矩形PAOB的面积.
(2005·遵义)如图,点P在x正半轴上,以P为圆心的⊙P与x轴交于A、B两点,与y轴交于C、D两点,⊙P的半径是4,CD=
4
3
.
(1)过点C作⊙P的切线交x轴于点E,求点E的坐标;
(2)若
S
△CBO
S
△PCO
=n
,求满足下列二个条件的抛物线的解析式:
①过点P、E;
②抛物线的顶点到x轴的距离为n.
第一页
上一页
126
127
128
129
130
下一页
最后一页
168055
168058
168061
168063
168066
168067
168069
168072
168075
168077