数学
(1)计算
18
+
1
2
×
2
+(
27
-
48
)÷
3
;
(2)已知,四边形ABCD顶点都在4×4正方形网格的格点上,如图所示,请用直尺和圆规画出四边形ABCD的外接圆,并标明圆心M的位置,这个圆
BC
所对的圆心角的度数是
90°
90°
.
已知:如图,AD平分∠BAC,DE∥AC,且AB=5cm,求DE的长.
(2001·无锡)已知:如图,弓形AmB小于半圆,它所在圆的圆心为O,半径为13,弦AB的长为24;C是弦AB上的一动点(异于A、B),过C作AB的垂线交弧AB于点P,以PC为直径的圆交AP于点D;E是AP的中点,连接OE.
(1)当点D、E不重合时(如图1),求证:OE∥CD;
(2)当点C是弦AB的中点时(如图2),求PD的长;
(3)当点D、E重合时,请你推断∠PAB的大小为多少度(只需写出结论,不必给出证明)
(2000·海南)如图,AB是⊙O的直径,弦(非直径)CD⊥AB,P是⊙O上不同于C、D的任一点.
(1)当点P在劣弧CD上运动时,∠APC与∠APD的关系如何?请证明你的结论;
(2)当点P在优弧CD上运动时,∠APC与∠APD的关系如何?请证明你的结论(不要求讨论P点与A点重合的情形)
(1998·上海)如图,已知AB是圆O的直径,AC是弦,AB=2,AC=
2
,在图中画出弦AD,使AD=1,并求出∠CAD的度数.
(1997·广西)已知:如图,四边形ABCD是圆内接四边形,
DB
=
DC
,以AD为直径作⊙O交BA的延长线于E,交AC于F.
(1)求证:AE=AE;
(2)设AB=2,AC=7,求AE的长.
(2013·萧山区模拟)如图,l
1
、l
2
、l
3
是一组距离不想等的平行线,作等边△ABC,使A、B在l
1
上,C在l
3
上,BC交l
2
于点M,△ACM的外接圆交l
3
于点N,试判断△AMN的形状并证明.
(2013·平阳县二模)如图,AB、CD是⊙O的直径,弦AE⊥CD于点F,延长BE、AD交于点G.
(1)求证:CD∥BG;
(2)若BE=4,OF=
1
2
DF;
①求证:DF=BE.
②求tanG的值.
(2012·黔西南州模拟)如图,已知⊙O中,∠AOB=120°,则弦AB上的圆周角为
60°或120°
60°或120°
.
(2012·犍为县模拟)已知直角梯形ABCD的四条边长分别为AB=2,BC=CD=10,AD=6,过B、D两点作圆,与BA的延长线交于点E,与CB的延长线交于点F,并延长CD交圆于G点.
(1)试证:BF=DG;
(2)求BE-BF的值.
第一页
上一页
30
31
32
33
34
下一页
最后一页
149670
149672
149674
149676
149678
149681
149683
149685
149687
149689