试题
题目:
(2001·无锡)已知:如图,弓形AmB小于半圆,它所在圆的圆心为O,半径为13,弦AB的长为24;C是弦AB上的一动点(异于A、B),过C作AB的垂线交弧AB于点P,以PC为直径的圆交AP于点D;E是AP的中点,连接OE.
(1)当点D、E不重合时(如图1),求证:OE∥CD;
(2)当点C是弦AB的中点时(如图2),求PD的长;
(3)当点D、E重合时,请你推断∠PAB的大小为多少度(只需写出结论,不必给出证明)
答案
(1)证明:∵CP是直径,
∴∠CDP=90°,
∵OE过圆心O,AE=PE,
∴OE⊥AP,
∴OE∥CD.
(2)解:连接OC、AO,
∵AC=BC,
∴OC⊥AB,
∵PC⊥AB,
∴P、C、O三点共线,
由勾股定理得:OC=
OA
2
-
AC
2
=5,
∴PC=13-5=8,
由勾股定理得:AP=
AC
2
+
PC
2
=4
13
,
由切割线定理得:AC
2
=AD·AP,
∴AD=
36
13
13
,
PD=AP-AD=
16
13
13
,
答:PD的长是
16
13
13
.
(3)答:∠PAB=45°.
(1)证明:∵CP是直径,
∴∠CDP=90°,
∵OE过圆心O,AE=PE,
∴OE⊥AP,
∴OE∥CD.
(2)解:连接OC、AO,
∵AC=BC,
∴OC⊥AB,
∵PC⊥AB,
∴P、C、O三点共线,
由勾股定理得:OC=
OA
2
-
AC
2
=5,
∴PC=13-5=8,
由勾股定理得:AP=
AC
2
+
PC
2
=4
13
,
由切割线定理得:AC
2
=AD·AP,
∴AD=
36
13
13
,
PD=AP-AD=
16
13
13
,
答:PD的长是
16
13
13
.
(3)答:∠PAB=45°.
考点梳理
考点
分析
点评
专题
垂径定理;等腰三角形的性质;直角三角形斜边上的中线;勾股定理;圆周角定理.
(1)根据圆周角定理求出∠CDP=90°,根据垂径定理求出OE⊥AP,即可推出答案;
(2)根据垂径定理求出OC⊥AB,根据勾股定理求出OC、AP,由切割线定理求出AD,计算AP-AD即可;
(3)根据直角三角形的性质和等腰三角形的性质即可求出∠PAB.
本题主要考查对圆周角定理,勾股定理,垂径定理,直角三角形的性质,等腰三角形的性质等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.
计算题;证明题.
找相似题
(2013·湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )
(2013·苏州)如图,AB是半圆的直径,点D是
AC
的中点,∠ABC=50°,则∠DAB等于( )
(2013·三明)如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为( )
(2013·龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )