数学
如图是用硬纸板做成的四个全等的直角三角形(两直角边长分别是a,b,斜边长为c)和一个边长为c的正方形,请你将它们拼成一个能证明勾股定理的图形,并利用此图形证明勾股定理.
做8个全等的直角三角形(2条直角边长分别为a、b,斜边长为c),再做3个边长分别为a、b、c的正方形,把它们拼成2个正方形(如图)你能利用这2个图形验证勾股定理吗?写出你的验证过程.
我们运用图中大正方形的面积可表示为(a+b)
2
,也可表示为c
2
+4(
1
2
ab),即(a+b)
2
=c
2
+4(
1
2
ab),由此推导出一个重要的结论,a
2
+b
2
=c
2
,这个重要的结论就是著名的“勾股定理”.这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.
(1)请你用图(II)的面积表达式验证勾股定理(其中四个直角三角形的较大的直角边长都为a,较小的直角边长都为b,斜边长都为c)
(2)请你用图(III)提供的图形组合成一个新的图形,使组合成的图形的面积表达式能够验证(x+y)
2
=x
2
+2xy+y
2
.画出图形并做适当标注.
(3)请你自己设计一个组合图形,使它的面积能验证:(2m+n)(m+n)=2m
2
+3mn+n
2
,画出图形并做适当标注.
通过前面的学习,我们知道利用面积的不同表示方法可以写出一个代数恒等式,比如图1的图形,我们可以把它看成长为(b+c),宽为a的长方形,则图形的面积为
a(b+c)
a(b+c)
,我们也可以把它看成是两个长方形组成的图形,则此时,它的面积可以表示为
ab+ac
ab+ac
,所以我们可以得到等式
a(b+c)=ab+ac
a(b+c)=ab+ac
(1)图2的图形蕴涵着一个著名定理,请你运用面积不同的表达方式推导出这个定理.
(2)在图3中,试画一个几何图形,使它的面积能够表示:(a+b)
2
=a
2
+2ab+b
2
(把图形作在方格中)
如图是美国总统Garfield于1896年给出的一种验证勾股定理的办法,你能利用它证明勾股定理吗?请写出你的证明过程.(提示:如图三个三角形均是直角三角形)
如图:Rt△ABC≌Rt△ADE,点C、A、E在一条直线上,若AB=c、AC=b、BC=a,请利用这个图形验证勾股定理.
如图,在边长为c的正方形中,有四个斜边为c的全等直角三角形,已知其直角边长为a,b.利用这个图试说明勾股定理.
在一张纸上画两个全等的直角三角形,并把它们拼成如图形状,请用两种方法表示这个梯形的面积.利用你的表示方法,你能得到勾股定理吗?
请选择一个图形来证明勾股定理.(可以自己选用其他图形进行证明)
奥地利数学家皮克发现了一个计算点阵中多边形面积的公式:S=a+
1
2
b-1,其中a表示多边形内部的点数,b表示多边形边界上的点数,S表示多边形的面积,请你根据下图,利用皮克公式探索一下勾股定理,看看是不是很简单.
第一页
上一页
1
2
3
4
5
下一页
最后一页
108174
108176
108178
108180
108182
108184
108186
108188
108190
108192