数学
(2005·南平)小明暑假到华东第一高峰-黄岗山(位于武夷山境内)旅游,导游提醒大家上山要多带一件衣服,并介绍当地山区气温会随海拔高度的增加而下降.沿途小明利用随身带的登山表(具有测定当前位置高度和气温等功能)测得以下数据:
海拔高度x米
400
500
600
700
…
气温y(℃)
28.6
28.0
27.4
26.8
…
(1)以海拔高度为x轴,气温为y轴,根据上表提供的数据在下列直角坐标系中描点;
(2)观察(1)中所苗点的位置关系,猜想y与x之间的函数关系,求出所猜想的函数表达式,并根据表中提供的数据验证你的猜想;
(3)如果小明到达山顶时,只告诉你山顶的气温为18.1℃,你能计算出黄岗山的海拔高度大约是多少米吗?
(2005·辽宁)某人计划购买一套没有装修的门市房,它的地面图形是正方形,若正方形的边长为x米,则办理
产权费用需1000x元.装修费用y
l
(元)与x(米)的函数关系如图所示.
(1)求y
l
与x的函数关系式;
(2)装修后将此门市房出租,租期五年,租金以每年每平方米200元计算.
①求五年到期时,由此门市房所获利润y(元)与x(米)的函数关系式;
②若五年到期时,按计划他将由此门市房赚取利润70000元,求此门市房的面积.(利润=租金-办理产权费用与装修费用之和)
(2005·黑龙江)某企业有甲、乙两个长方体的蓄水池,将甲池中的水以每小时6立方米的速度注入乙池,
甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如图所示,结合图象回答下列问题:
(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数关系式;
(2)求注水多长时间甲、乙两个蓄水池水的深度相同;
(3)求注水多长时间甲、乙两个蓄水池的蓄水量相同.
(2005·河北)在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)的关系如图所示.请根据图象所提供的信息解答下列问题:
(1)甲、乙两根蜡烛燃烧前的高度分别是
,从点燃到燃尽所用的时间分别是
;
(2)分别求甲、乙两根蜡烛燃烧时y与x之间的函数关系式;
(3)当x为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等.
(2005·海南)在我省环岛高速公路上,一辆轿车和一辆货车沿相同路线从A地到B地,所经过的
路程y(千米)与时间x(小时)的函数关系图象如图所示,试根据图象,回答下列问题:
(1)货车比轿车早出发
1
1
小时,轿车追上货车时行驶了
150
150
千米,A地到B地的距离为
300
300
千米.
(2)轿车追上货车需多少时间?
(3)轿车比货车早到多少时间?
(2005·哈尔滨)甲、乙两名同学进行登山比赛,图中表示甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,各自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:
(1)分别求出表示甲、乙两同学登山过程中路程s(千米)与时间t(时)的函数解析式;(不要求写出自变量t的取值范围)
(2)当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;
(3)在(2)的条件下,设乙同学从A处继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B处与乙相遇,此时点B与山顶距离为1
.5千米,相遇后甲、乙各自按原来的路线下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?
(2005·广东)今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解下列问题:
(1)分别写出当0≤x≤100和x>100时,y与x的函数关系式;
(2)利用函数关系式,说明电力公司采取的收费标准;
(3)若该用户某月用电62度,则应缴费多少元若该用户某月缴费105元时,则该用户该月用了多少度电?
(2005·恩施州)恩施山青水秀,气候宜人.在世界自然保护区星斗山,有一种雪白的树蟋蟀,人们发现他15秒钟所叫次数与当地温度之间满足一次函数关系.下面是蟋蟀所叫次数与温度变化情况对照表:
(1)根据表中数据,用含x的代数式表示y;
(2)在该地最热的夏天,人们测得这种蟋蟀15秒钟叫了50次,那么该地当时的最高温度大约为多少摄氏度?
(2004·襄阳)襄樊市认真落实国家关于减轻农民负担,增加农民收入的政策,从2003年开始减征农业税,2002年至2004年征收农业税变化情况见表(1),2004年市政府为了鼓励农民多种粮食,实行保护价收购,并对种植优质水稻(如中籼稻)另给予每亩15元的补贴(摘自《襄樊日报》2004年5月5日消息).我市农民李江家有4个劳动力,承包20亩土地,今年春季全部种植中籼稻和棉花,种植中籼稻和棉花每亩所需劳力和预计每亩平均产值见表(2)设2004年李江家种植中籼稻和棉花的预计总收入为P元,种植中籼稻的土地为x亩.
(1)李江家从国家开始减征农业税后两年可少交农业税多少元?
(2)若不考虑上缴农业税,请写出P(元)与x(亩)的函数关系式;
(3)李江家在不考虑他人帮工等其它因素的前提下,怎样安排中籼稻和棉花的种植面积才能保证P最大?最大值是多少?
表1:
年份
2002
2003
2004
农业税(元/亩)
117.24
70.44
38.26
表2:
农作物
产值(元/亩)
劳力(人/亩)
中籼稻
785
0.15
棉花
1200
0.35
(2004·芜湖)某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5米
3
的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1米
3
污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:
(1)求出y与x的函数关系式;(纯利润=总收入-总支出)
(2)当y=106000时,求该厂在这个月中生产产品的件数.
第一页
上一页
48
49
50
51
52
下一页
最后一页
82621
82623
82624
82627
82629
82631
82633
82636
82638
82640