题目:
(2005·广东)今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解下列问题:

(1)分别写出当0≤x≤100和x>100时,y与x的函数关系式;
(2)利用函数关系式,说明电力公司采取的收费标准;
(3)若该用户某月用电62度,则应缴费多少元若该用户某月缴费105元时,则该用户该月用了多少度电?
答案
解:(1)将(100,65)代入y=kx得:
100k=65,
解得k=0.65.
则y=0.65x(0≤x≤100),
将(100,65),(130,89)代入y=kx+b得:
,
解得:
.
则y=0.8x-15(x>100);
(2)根据(1)的函数关系式得:
月用电量在0度到100度之间时,每度电的收费的标准是0.65元;
月用电量超出100度时,超过部分每度电的收费标准是0.8元;
(3)用户月用电62度时,62×0.65=40.3,用户应缴费40.3元,
用户月缴费105元时,即0.8x-15=105,解得x=150,该用户该月用了150度电.
解:(1)将(100,65)代入y=kx得:
100k=65,
解得k=0.65.
则y=0.65x(0≤x≤100),
将(100,65),(130,89)代入y=kx+b得:
,
解得:
.
则y=0.8x-15(x>100);
(2)根据(1)的函数关系式得:
月用电量在0度到100度之间时,每度电的收费的标准是0.65元;
月用电量超出100度时,超过部分每度电的收费标准是0.8元;
(3)用户月用电62度时,62×0.65=40.3,用户应缴费40.3元,
用户月缴费105元时,即0.8x-15=105,解得x=150,该用户该月用了150度电.