数学
已知A(2
3
,0),直线y=(2-
3
)x-2交x轴于点F,y轴于点B,直线l∥AB且交 y轴于点C,交x轴于点D,点A关于直线l的对称点为A',连接AA',A'D.直线l从AB开始,以1个单位每秒的速度沿y轴正方向向上平移,设移动时间为t.
(1)求A'点的坐标(用t的代数式表示);
(2)请猜想AB与AF长度的数量关系,并说明理由;
(3)过点C作直线AB的垂线交直线y=(2-
3
)x-2于点E,以点C为圆心CE为半径作⊙C,求当t为何值时,⊙C与△AA′D三边所在直线相切?
在直角坐标系xoy中,一次函数
y=
3
2
2
x-3
的图象与x轴、y轴分别交于点B和点A,点C的坐标是(0,1),点D在y轴上且满足∠BCD=∠ABD.求D点的坐标.
(2010·房山区一模)如图,直线AB与y轴交于点A,与x轴交于点B,点A的纵坐标、点B的横坐标如图
所示.
(1)求直线AB的解析式;
(2)过原点O的直线把△ABO分成面积相等的两部分,直接写出这条直线的解析式.
如图,在平行四边形ABCD中,AB在x轴上,D点y轴上,∠C=60°,BC=6,B点坐标为(4,0).点M是边AD上一点,且DM:AD=1:3.点E、F分别从A、C同时出发,以1厘米/秒的速度分别沿AB、CB向点B运动(当点F运动到点B时,点E随之停止运动),
EM、CD的延长线交于点P,FP交AD于点Q.⊙E半径为
5
2
,设运动时间为x秒.
(1)求直线BC的解析式;
(2)当x为何值时,PF⊥AD;
(3)在(2)问条件下,⊙E与直线PF是否相切?如果相切,加以证明,并求出切点的坐标;如果不相切,说明理由.
如图,直线
y=-
1
2
x+b
交x轴于点A,交直线
y=
3
2
x
于点B(2,m).矩形CDEF的边DC在x轴上,D在C的左侧,EF在x轴的上方,DC=2,DE=4.当点C的坐标为(-2,
0)时,矩形CDEF开始以每秒2个单位的速度沿x轴向右运动,运动时间为t秒.
(1)求b、m的值;
(2)矩形CDEF运动t秒时,直接写出C、D两点的坐标;(用含t的代数式表示)
(3)当点B在矩形CDEF的一边上时,求t的值;
(4)设CF、DE分别交折线OBA于M、N两点,当四边形MCDN为直角梯形时,求t的取值范围.
直线y=x-2分别交x轴、y轴于A、B两点,原点为O
(1)求△AOB的面积;
(2)求O到直线y=x-2的距离;
(3)是否存在过△AOB的顶点的直线L,把△AOB分成面积相等的两部分,若存在,写出直线L的解析式.
已知:如图,直线y=kx+b与x轴、y轴分别交于点A、B两点,OA=OB=1,动点P在线段AB上移动,以P为顶点作∠OPQ=45°,射线PQ交x轴于点Q.
(1)求直线AB的解析式.
(2)△OPQ能否是等腰三角形?如果能,请求出点P的坐标;若不能,请说明理由.
(3)无论m为何值,(2)中求出的P点是否始终在直线
y=mx+
1-m
2
(m≠0)上?请说明理由.
在平面直角坐标系内,点O为坐标原点,直线y=
1
2
x
+6交x轴于点A,交y轴于点B,过点B作AB的垂线交x轴于点C,∠ABC的平分线交AC于点D.
(1)求点D的坐标;
(2)若P从点A出发以每秒
5
个单位长度的速度向终点B运动,过点P作x轴的平行线交BD于点E,交BC于点F,设线段EF的长为y,点P运动的时间为t(t>0)秒,求y与t之间的函数关系式,不需写出自变量t的取值范围.
(3)在(2)的条件下,设同时经过B,C,D三点的圆交AB于B,G两点,当t为何值时有EF=
5
3
PG?
已知:如图,在平面直角坐标系xoy中,一次函数
y=
3
4
x+3
的图象与x轴和y轴
交于A、B两点,将△AOB绕点O顺时针旋转90°后得到△A′O′B′.直线A′B′与直线AB相交于点C.
(1)求C点坐标;
(2)求△A′BC的面积.
如图,以O为端点的射线OA所在直线的函数关系式为y=
3
4
x(x≥0),射线OA上有一点M(8,y),另一点P从O点出发沿射线OA方向以每秒1个单位长度的速度运动,设运动时间为t秒,∠AOx=α.
(1)求y以及sinα、cosα的值;
(2)用含t的代数式表示点P的坐标.
第一页
上一页
107
108
109
110
111
下一页
最后一页
83792
83793
83794
83795
83796
83797
83798
83799
83800
83801