数学
(2012·岱岳区二模)如图,一次函数y=-
3
3
x+1的图象与x轴、y轴分别交于点A、B,以线段AB为边在第一象限内作等边△ABC.
(1)求△ABC的面积;
(2)如果在第二象限内有一点P(a,
1
2
),请用含a的式子表示四边形ABPO的面积,并求出当△ABP的面积与△ABC的面积相等时a的值.
(2012·常州模拟)在直角坐标系中,已知A(0,1),B(10,1),C(9,4).
(1)在网格中画出A、B、C三点的圆和直线y=
1
2
x的图象;
(2)已知P是直线y=
1
2
x上的点,且△APB是直角三角形,那么符合条件的点P共有
4
4
个;
(3)如果直线y=kx(k>0)上有且只有二个点Q与点A、点B两点构成直角△ABQ.则k=
1
10
1
10
.
(2012·鞍山一模)如图,点C的坐标为(0,3),点A的坐标为(
3
3
,0),点B在x轴上方且BA⊥x轴,
tanB=
3
,过点C作CD⊥AB于D,点P是线段OA上一动点,PM∥AB交BC于点M,交CD于点Q,以PM为斜边向右作直角三角形PMN,∠MPN=30°,PN、MN的延长线交直线AB于E、F,设PO的长为x,EF的长为y.
(1)求线段PM的长(用x表示);
(2)求点N落在直线AB上时x的值;
(3)求PE是线段MF的垂直平分线时直线PE的解析式;
(4)求y与x的函数关系式并写出相应的自变量x取值范围.
(2011·桐乡市一模)在直角梯形OABC中,CB∥OA,∠COA=90°,CB=4,OA=8,AB=4
5
.
分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.
(1)求点B的坐标;
(2)若D是线段OB上的点,OD=3DB,直线CD交x轴于E,求直线CD的解析式;
(3)若点P是(2)中直线CD上的一个动点,在x轴上方的平面内是否存在另一个点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,请求出点Q的坐标;若不存在,请说明理由.
已知:如图,在平面直角坐标系xoy中,一次函数
y=
3
4
x+3
的图象与x轴和y轴交于A、B两
点,将△AOB绕点O顺时针旋转90°后得到△A′OB′.
(1)分别求出点A′、B′的坐标;
(2)若直线A′B′与直线AB相交于点C,求S
四边形OB′CB
的值.
一次函数图象如图所示,求其解析式,并求出以A为圆心,以AB长为半径的圆方程.
如图:在平面直角坐标系中,直线y=kx+3分别与x轴、y轴交于A、B两点,且OA=4,点C是x轴上一点,
如果把△AOB沿着直线BC折叠,那么点A恰好落在y轴负半轴上的点D处.
(1)求直线AB的表达式;
(2)点D的坐标;
(3)求线段CD的长;
(4)求tan∠ABC的值.
如图,直线y=x+2交x轴于B、A两点,直线y=-x与直线y=x+2交于点P.
(1)点P关于x轴对称点坐标为
(-1,-1)
(-1,-1)
;
(2)将△POB绕原点逆时针旋转90°,画出旋转后得到的△P
1
OB
1
,并写出P
1
、B
1
的坐标;
(3)求直线y=-x沿射线PA方向平移多少个单位后经过点(4,0)?
如图,直线y=kx+b(k≠0)与坐标轴分别交于A、B两点,OA=8,OB=6.动点P从O
点出发,沿路线O→B→A以每秒1个单位长度的速度运动,到达A点时运动停止.
(1)直接写出A、B两点的坐标;
(2)求出直线AB的解析式;
(3)设点P的运动时间为t(秒),△OPA的面积为S,求S与t之间的函数关系式(不必写出自变量的取值范围);
(4)当S=12时,直接写出点P的坐标,此时,在坐标轴上是否存在点M,使以O、A、P、M为顶点的四边形是梯形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
如图,直线l:
y=-
3
4
x+6
与x轴、y轴分别交于点M,N.点P从点N出发,以每秒1个单位长度的速度沿N→O方向运动,点Q从点O出发,以每秒2个单位长度的速度
沿O→M的方向运动.已知点P、Q同时出发,当点Q到达点M时,P、Q两点同时停止运动,设运动时间为t秒.
(1)直接写出点M,N的坐标;
(2)当t为何值时,PQ与l平行?
(3)设四边形MNPQ的面积为S,求S关于t的函数关系式,并求S的最大值.
第一页
上一页
102
103
104
105
106
下一页
最后一页
83742
83743
83744
83745
83746
83747
83748
83749
83750
83751