数学
(2010·攀枝花)如图所示,在矩形ABCD中,AB=6,AD=2
3
,点P是边BC上的动点(点P不与点B,C重合),过点P作直线PQ∥BD,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C的对应点是R点.设CP=x,△PQR与矩形ABCD重叠部分的面积为y.
(1)求∠CPQ的度数.
(2)当x取何值时,点R落在矩形ABCD的边AB上?
(3)当点R在矩形ABCD外部时,求y与x的函数关系式.并求此时函数值y的取值范围.
(2009·自贡)如图,把矩形纸片ABCD沿EF折叠,使点B落在AD边上的点B′处,点A落在A′处.
(1)求证:B′E=BF;
(2)设AE=a,AB=b,BF=c,试猜想a、b、c之间有何等量关系,并给予说明.
(2007·烟台)生活中,有人喜欢把传送的便条折成形状
,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为26cm,宽为xcm,分别回答下列问题:
(1)为了保证能折成图④的形状(即纸条两端均超出点P),试求x的取值范围;
(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离(用x表示).
(2007·临沂)如图,已知矩形ABCD.
(1)在图中作出△CDB沿对角线BD所在的直线对折后的△C′DB,C点的对应点为C′(用尺规作图,保留清晰的作图痕迹,简要写明作法);
(2)设C′B与AD的交点为E,若△EBD的面积是整个矩形面积的
1
3
,求∠DBC的度数.
(2006·浙江)现有一张长和宽之比为2:1的长方形纸片,将它折两次(第一次折后也可打开铺平再者第二次),使得折痕将纸片分为面积相等且不重叠的四个部分(称为一次操作),如图甲(虚线表示折痕).除图甲外,请你再给出三种不同的操作,分别将折痕画在图①至图③中(规定:一个操作得到的四个图形,和另一个操作得到的四个图形,如果能够“配对”得到四组全等的图形,那么就认为是相同的操作,如图乙和图甲示相同的操作).
(2006·崇左)如图,已知△ABC的面积为50米
2
,将△ABC沿DE翻折,使点A和点C重合,若折痕DE恰好平行于CB,那么△BCE的面积为
25
25
米
2
.
(2005·黄冈)图(1)中的梯形符合
底角为60°且上底与两腰相等的等腰梯形
底角为60°且上底与两腰相等的等腰梯形
条件时,可以经过旋转和翻折形成图案(2).
(2004·太原)已知:如图,Rt△ABC中,∠C=90°,沿过点B的一条直线BE折叠△ABC,使点C恰好落在AB边的中点D处,则∠A=
30
30
度.
(2004·南平)已知:如图,在△ABC中,BC=8,AD是BC边上的高,D为垂足,将△ABC折叠使点A与点D重合,则折痕EF的长为
4
4
.
(2004·黑龙江)如图,矩形ABCD中,AB=3,BC=4,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积是
75
16
75
16
.
第一页
上一页
53
54
55
56
57
下一页
最后一页
70425
70428
70429
70432
70434
70436
70438
70440
70442
70444