试题
题目:
(2009·自贡)如图,把矩形纸片ABCD沿EF折叠,使点B落在AD边上的点B′处,点A落在A′处.
(1)求证:B′E=BF;
(2)设AE=a,AB=b,BF=c,试猜想a、b、c之间有何等量关系,并给予说明.
答案
(1)证明:由题意得B′F=BF,∠B′FE=∠BFE,
∵在矩形ABCD中,AD∥BC,
∴∠B′EF=∠BFE,
∴∠B′FE=∠B'EF,
∴B′F=B′E,
∴B′E=BF;
(2)a,b,c三者关系不唯一,有两种可能情况:
(ⅰ)a,b,c三者存在的关系是a
2
+b
2
=c
2
.
证明:连接BE,则BE=B′E,
∵由(1)知B′E=BF=c,
∴BE=c.
在△ABE中,∠A=90°,
∴AE
2
+AB
2
=BE
2
,
∵AE=a,AB=b,
∴a
2
+b
2
=c
2
;
(ⅱ)a,b,c三者存在的关系是a+b>c.
证明:连接BE,则BE=B′E.
∵由(1)知B′E=BF=c,
∴BE=c,
∵在△ABE中,AE+AB>BE,
∴a+b>c.
(1)证明:由题意得B′F=BF,∠B′FE=∠BFE,
∵在矩形ABCD中,AD∥BC,
∴∠B′EF=∠BFE,
∴∠B′FE=∠B'EF,
∴B′F=B′E,
∴B′E=BF;
(2)a,b,c三者关系不唯一,有两种可能情况:
(ⅰ)a,b,c三者存在的关系是a
2
+b
2
=c
2
.
证明:连接BE,则BE=B′E,
∵由(1)知B′E=BF=c,
∴BE=c.
在△ABE中,∠A=90°,
∴AE
2
+AB
2
=BE
2
,
∵AE=a,AB=b,
∴a
2
+b
2
=c
2
;
(ⅱ)a,b,c三者存在的关系是a+b>c.
证明:连接BE,则BE=B′E.
∵由(1)知B′E=BF=c,
∴BE=c,
∵在△ABE中,AE+AB>BE,
∴a+b>c.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
(1)首先根据题意得B′F=BF,∠B′FE=∠BFE,接着根据平行线的性质和等腰三角形的判定即可证明B′E=BF;
(2)解答此类题目时要仔细读题,根据三角形三边关系求解分类讨论解答,要提高全等三角形的判定结合勾股定理解答.
此题主要考查了矩形的翻折、等角对等边、三角形全等、勾股定理等知识,寻找几何元素之间的对应关系,形成较为常规的方法解决问题,利用等角对等边、翻折等知识来证明是解题关键.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )