试题
题目:
(2006·浙江)现有一张长和宽之比为2:1的长方形纸片,将它折两次(第一次折后也可打开铺平再者第二次),使得折痕将纸片分为面积相等且不重叠的四个部分(称为一次操作),如图甲(虚线表示折痕).除图甲外,请你再给出三种不同的操作,分别将折痕画在图①至图③中(规定:一个操作得到的四个图形,和另一个操作得到的四个图形,如果能够“配对”得到四组全等的图形,那么就认为是相同的操作,如图乙和图甲示相同的操作).
答案
解:距离如下:
解:距离如下:
考点梳理
考点
分析
点评
翻折变换(折叠问题).
主要根据全等图形的思想去分割长方形.分成4个全等的图形即可.
考查学生的动手操作能力和空间想象能力.
本题首先引发了学生提出方案的积极性,又关注了学生提出问题的深度和广度.学生会从不同角度展开想象的翅膀,按照自己的设计完成后的赏析中还有可能进行反思,从反思中获得解决问题的经验.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )