试题
题目:
(2004·太原)已知:如图,Rt△ABC中,∠C=90°,沿过点B的一条直线BE折叠△ABC,使点C恰好落在AB边的中点D处,则∠A=
30
30
度.
答案
30
解:∵在Rt△ABC中,∠C=90°,△BCE与△BDE重合,
∴ED⊥AB,∠EBA=∠EBC,
又点D是AB的中点,∴△AEB为等腰三角形,
∴∠A=∠EBA.
∵∠A+∠EBA+∠EBC=90°,
∴3∠A=90°,∴∠A=30°.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题);角平分线的性质;线段垂直平分线的性质.
由折叠可知,DB=BC,又D为AB的中点,所以BC=
1
2
AB,在直角三角形中,30°所对的直角边是斜边的一半.
本题主要利用在直角三角形中,30度的角所对的直角边是斜边的一半求值.
压轴题.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )