数学
同学们,折纸中也有很大的学问呢.黄老师出示了以下三个问题,小聪、小明、小慧分别在黑板上进行了板演,请你也解答这个问题:
在一张长方形ABCD纸片中,AD=25cm,AB=20cm,现将这张纸片按如下列图示方式折叠,分别求折痕的长.
(1)如图1,折痕为AE;
(2)如图2,P,Q分别为AB,CD的中点,折痕为AE;
(3)如图3,折痕为EF.
将一条两边沿互相平行的纸带如图折叠.
(1)若∠1=36°,则∠2=
72°
72°
;
(2)当∠1:∠2=2:3,求出∠2的度数.
(根据教科书八上,P21,12题改编)
如图,四边形ABCD是矩形纸片.
(1)把矩形纸片ABCD沿过点A的直线折叠,使AB边落在矩形ABCD内部,点B落在CD边的点E处,折痕为AF,在图中用尺规作出折叠后的图形;(不写作法与证明,保留作图痕迹)
(2)若点E为DC的中点,且CD=6,求折痕AF的长.
生活中有人喜欢把请人传送的便条折成图丁形状,折叠过程是这样的(阴影部分表示纸条反面):
(1)如果信纸折成的长方形纸条宽为2cm,为了保证能折成图丁形状(即纸条两端均超出点P),纸条长至少多少厘米?纸条长最小时.长方形纸条面积是多少?
(2)假设折成图丁形状纸条宽xcm,并且一端超出P点2cm,另一端超出P点3cm,若信纸折成的长方形纸条长为ycm.求y关于x的函数关系式,用含x的代数式表示折成的图丁所示的平面图形的面积S;
(3)若希望(2)中纸条两端超出P点长度相等,即最终图形丁是轴对称图形,如果y=15cm,则开始折叠时点M应放在什么位置?
在一张长方形ABCD纸片中,AD=25cm,AB=20cm,现将这张纸片按下列图示方式折叠,请分别求折痕的长.
(1)如图1,折痕为AE,点B的对应点F在AD上;
(2)如图2,P,Q分别为AB,CD的中点,B的对应点G在PQ上,折痕为AE;
(3)如图3,点B与点D重合,折痕为EF.
将矩形纸片ABCD按如图所示折叠,EF为折痕,点B与点P(点P在DC边上)重合.
(1)当BC与CP重合(如图甲)时,四边形BFPE是
正方
正方
形;
(2)当BC与CP不重合时,分别指出图乙、丙中的四边形BFPE是什么特殊四边形,并选择两图之一给出证明.
如图,有一正方形的纸片ABCD,边长为3,点E是DC边上一点且DE=
1
3
DC,把△ADE沿AE折叠使△ADE落在△AFE的位置,延长EF交BC边于点G,连接AG.有以下四个结论 ①∠GAE=45° ②BG+DE=GE ③点G是BC的中点 ④S
△ECG
=
3
2
(1)其中正确的结论序号是
①②③④
①②③④
.
(2)请选一个你认为正确的结论进行说理论证.
将长为8,宽为6的矩形ABCD折叠,使B、D重合.
(1)求折痕EF的长.
(2)求三角形DEF的面积.
如图,△ABC为等腰三角形,把它沿底边BC翻折后,得到△DBC.则四边形ABDC是什么特殊四边形?写出你的结论并给出证明.
如图所示,将矩形ABCD沿着直线BD折叠,使点C落在点C′,BC′交AD于点E,AD=8,AB=4.
(1)求证:△BED是等腰三角形;
(2)求△BED的面积.
第一页
上一页
38
39
40
41
42
下一页
最后一页
70119
70121
70123
70125
70127
70129
70131
70133
70135
70137