试题

题目:
计算:
a+2
a2-2a+1
·
a2-4a+4
a+1
÷
a2-4
a2-1

x
y
-
y
x
+
x2+y2
xy

答案
解:①原式=
a+2
(a-1)2
·
(a-2)2
a+1
·
(a+1)(a-1)
(a+2)(a-2)

=
a-2
a-1


②原式=
x2
xy
-
y2
xy
+
x2+y2
xy

=
x2-y2+x2+y2
xy

=
2x
y

解:①原式=
a+2
(a-1)2
·
(a-2)2
a+1
·
(a+1)(a-1)
(a+2)(a-2)

=
a-2
a-1


②原式=
x2
xy
-
y2
xy
+
x2+y2
xy

=
x2-y2+x2+y2
xy

=
2x
y
考点梳理
分式的混合运算.
①先把分子、分母因式分解,再把除法转化成乘法,再进行约分即可;
②先通分,再把分子相加减,然后约分即可得出答案;
本题主要考查了分式的混合运算,用到的知识点是通分、因式分解和约分,在计算时要把结果化到最简.
找相似题