试题

题目:
(1)化简:(
1
x+1
-
1
x-1
)
·
xr-1
r

(r)
xr-1
x
·
x
x+1
+(3x+1)

答案
解:(1)(
1
x+1
-
1
x-1
)
·
x2-1
2

=(
x-1
(x+1)(x-1)
-
x+1
(x+1)(x-1)
·
(x+1)(x-1)
2

=
-2
(x+1)(x-1)
·
(x+1)(x-1)
2

=-1;


(2)
x2-1
x
·
x
x+1
+(3x+1)

=
(x+1)(x-1)
x
·
x
x+1
+(3x+1)
=(x-1)+3x+1
=x-1+3x+1
=4x.
解:(1)(
1
x+1
-
1
x-1
)
·
x2-1
2

=(
x-1
(x+1)(x-1)
-
x+1
(x+1)(x-1)
·
(x+1)(x-1)
2

=
-2
(x+1)(x-1)
·
(x+1)(x-1)
2

=-1;


(2)
x2-1
x
·
x
x+1
+(3x+1)

=
(x+1)(x-1)
x
·
x
x+1
+(3x+1)
=(x-1)+3x+1
=x-1+3x+1
=4x.
考点梳理
分式的混合运算.
(1)先把括号里面的式子进行通分,再合并,然后进行约分,即可得出答案;
(2)先将第一个分式的分子分解因式,根据分式的乘法运算再进行约分,然后合并同类项,即可得出答案.
此题考查了分式的混合运算,关键是通分,合并同类项,注意混合运算的运算顺序,把分式化到最简.
找相似题