试题

题目:
化简:
(1)
x+2y
x2-y2
+
y
y2-x2
-
2x
x2-y2

(2)(3-
x
x+2
)(x+2)

(3)(
x
x-1
-
2x
x2-1
x
x-1

(4)
x-1
x+2
÷
x2-2x+1
x2-4
+
1
x-1

答案
解:(1)原式=
x+2y
x2-y2
-
y
x2-y2
-
2x
x2-y2

=
x+2y-y-2x
x2-y2

=
y-x
x2-y2

=
-(x-y)
(x+y)(x-y)

=-
1
x+y


(2)原式=3(x+2)-
x
x+2
·(x+2)
=3x+6-x
=2x+6;

(3)原式=[
x(x+1)-2x
(x+1)(x-1)
x-1
x

=
x(x-1)
(x+1)(x-1)
·
x-1
x

=
x-1
x+1


(4)原式=
x-1
x+2
·
(x+2)(x-2)
(x-1)2
+
1
x-1

=
x-2
x-1
+
1
x-1

=
x-2+1
x-1

=
x-1
x-1

=1.
解:(1)原式=
x+2y
x2-y2
-
y
x2-y2
-
2x
x2-y2

=
x+2y-y-2x
x2-y2

=
y-x
x2-y2

=
-(x-y)
(x+y)(x-y)

=-
1
x+y


(2)原式=3(x+2)-
x
x+2
·(x+2)
=3x+6-x
=2x+6;

(3)原式=[
x(x+1)-2x
(x+1)(x-1)
x-1
x

=
x(x-1)
(x+1)(x-1)
·
x-1
x

=
x-1
x+1


(4)原式=
x-1
x+2
·
(x+2)(x-2)
(x-1)2
+
1
x-1

=
x-2
x-1
+
1
x-1

=
x-2+1
x-1

=
x-1
x-1

=1.
考点梳理
分式的混合运算;约分;通分;最简分式;最简公分母;分式的乘除法;分式的加减法.
(1)变形后根据同分母的分式相加减法则,分母不变,分子相加减,最后化成最简分式即可;
(2)根据乘法的分配律展开后,先算乘法,再合并同类项即可;
(3)先根据异分母的分式相加减法则算括号里面的,再把除法变成乘法,进行约分即可;
(4)先把除法变成乘法,进行约分,再进行加法运算即可.
本题主要考查对分式的混合运算,约分,通分,最简分母,分式的加、减、乘、除运算等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.
计算题.
找相似题