试题

题目:
(1)
3
+|
3
+
3-x
|+
(-2)2

(2)大(a+1)2+了(-a-1)(a-1)+3(a-1)2
(3)
x
x-y
·
y2
x+y
+
xy
x-y
+
x2
x2+y2

答案
解:(q)
3
+|
3
+
3-8
|+
(-h)h

=
3
+
.
3
-h
  
.
+h
=
3
+h-
3
+h
=4;

(h)4(a+q)h+7(-a-q)(a-q)+3(a-q)h
=4(ah+ha+q)-7(ah-q)+3(ah-ha+q)
=4ah+8a+4-7ah+7+3ah-6a+3
=ha+q4;

(3)
x
x-y
·
yh
x+y
+
x4y
x4-y4
+
xh
xh+yh

=
xyh
xh-yh
+
x4y
x4-y4
+
xh
xh+yh

=
x3yh+xy4
x4-y4
+
x4y
x4-y4
+
x4-xhyh
x4-y4

=
x3yh+x y4+x4y+x4-xhyh
x4-y4

解:(q)
3
+|
3
+
3-8
|+
(-h)h

=
3
+
.
3
-h
  
.
+h
=
3
+h-
3
+h
=4;

(h)4(a+q)h+7(-a-q)(a-q)+3(a-q)h
=4(ah+ha+q)-7(ah-q)+3(ah-ha+q)
=4ah+8a+4-7ah+7+3ah-6a+3
=ha+q4;

(3)
x
x-y
·
yh
x+y
+
x4y
x4-y4
+
xh
xh+yh

=
xyh
xh-yh
+
x4y
x4-y4
+
xh
xh+yh

=
x3yh+xy4
x4-y4
+
x4y
x4-y4
+
x4-xhyh
x4-y4

=
x3yh+x y4+x4y+x4-xhyh
x4-y4
考点梳理
分式的混合运算;实数的运算;整式的混合运算.
(1)根据实数的运算顺序和法则,先去掉绝对值和根号,再进行合并即可;
(2)根据完全平方公式和平方差公式分别进行计算,再把所得的结果合并即可;
(3)先通分,再按分式的加法运算法则进行计算即可.
此题考查了分式的混合运算,解题的关键掌握实数的运算顺序和法则,注意解分式时要把分式化到最简.
找相似题