试题

题目:
计算:
(1)
x2-4x+4
x2-2x+1
·
x-1
x2-4
÷
x-2
2x+x2

(2)(
1
a+2
-1)÷
a2+2a+1
a2-4

(3)(ab3)2·(-
b
a2
)3÷(
b
a
)4

答案
解:(1)原式=
(x-2)2
(x-1)2
·
x-1
(x+2)(x-2)
÷
x-2
x(x+2)

=
(x-2)2
(x-1)2
·
x-1
(x+2)(x-2)
·
x(x+2)
x-2

=
x
x-1

(2)原式=
a+1
a+2
÷
(a+1)2
(a+2)(a-2)
=
a+1
a+2
·
(a+2)(a-2)
(a+1)2
=
a-2
a+1

(3)原式=-a2b6·
b3
a6
÷
b4
a4
=-=-a2b6·
b3
a6
·
a4
b4
=-b5
解:(1)原式=
(x-2)2
(x-1)2
·
x-1
(x+2)(x-2)
÷
x-2
x(x+2)

=
(x-2)2
(x-1)2
·
x-1
(x+2)(x-2)
·
x(x+2)
x-2

=
x
x-1

(2)原式=
a+1
a+2
÷
(a+1)2
(a+2)(a-2)
=
a+1
a+2
·
(a+2)(a-2)
(a+1)2
=
a-2
a+1

(3)原式=-a2b6·
b3
a6
÷
b4
a4
=-=-a2b6·
b3
a6
·
a4
b4
=-b5
考点梳理
分式的混合运算.
(1)首先把分式的分子、分母分别分解因式,统一成乘法运算,然后进行分式的乘法运算即可;
(2)首先计算括号内的式子,把除法转化成乘法运算,然后进行分式的乘法运算即可;
(3)首先确定符号,进行乘方运算,把除法转化成乘法运算,然后进行分式的乘法运算即可.
本题考查分式的混合运算,关键是通分,合并同类项,注意混合运算的运算顺序.
找相似题