试题
题目:
计算:
(1)
2a
a+1
+
2
a+1
(2)
y
2
-4y+4
2y-6
·
1
y+3
÷
12-6y
9-
y
2
.
答案
解:(1)原式=
2a+2
a+1
=2;
(2)原式=
(y-2
)
2
2(y-3)
×
1
y+3
÷
6(2-y)
(3-y)(3+y)
=
(y-2
)
2
2(y-3)(y+3)
×
(3-y)(3+y)
6(2-y)
=
y-2
12
.
解:(1)原式=
2a+2
a+1
=2;
(2)原式=
(y-2
)
2
2(y-3)
×
1
y+3
÷
6(2-y)
(3-y)(3+y)
=
(y-2
)
2
2(y-3)(y+3)
×
(3-y)(3+y)
6(2-y)
=
y-2
12
.
考点梳理
考点
分析
点评
专题
分式的混合运算.
(1)直接进行同分母分式的加法运算,然后化简即可;
(2)将分子分母能分解的先分解,然后从左至右进行运算即可.
本题考查了分式的混合运算,属于基础题,关键是掌握分式的乘除法则.
计算题.
找相似题
(2013·泰安)化简分式
2
x-1
÷(
2
x
2
-1
+
1
x+1
)
的结果是( )
(2011·仙桃)化简
(
m
2
m-2
+
4
2-m
)÷(m+2)
的结果是( )
(9oo9·黄冈)化简
(
a
a-9
-
a
a+9
)·
4-
a
9
a
的结果是( )
(2008·临沂)化简(手+
手
a-手
)
÷
a
a
2
-2a+手
的结果是( )
(2008·黄冈)计算
(
a
b
-
b
a
)÷
a+b
a
的结果为( )