答案
解:∵
====k,
∴a=(b+c+d)k,①
b=(a+c+d)k,②
c=(a+b+d)k,③
d=(a+b+c)k,④
∴①+②+③+④得,a+b+c+d=k(3a+3b+3c+3d),
当a+b+c+d=0时,
∴b+c+d=-a,
∵a=(b+c+d)k,
∴a=-ak
∴k=-1,
当a+b+c+d≠0时,∴两边同时除以a+b+c+d得,3k=1,
∴k=
.
故答案为:k=-1或
.
解:∵
====k,
∴a=(b+c+d)k,①
b=(a+c+d)k,②
c=(a+b+d)k,③
d=(a+b+c)k,④
∴①+②+③+④得,a+b+c+d=k(3a+3b+3c+3d),
当a+b+c+d=0时,
∴b+c+d=-a,
∵a=(b+c+d)k,
∴a=-ak
∴k=-1,
当a+b+c+d≠0时,∴两边同时除以a+b+c+d得,3k=1,
∴k=
.
故答案为:k=-1或
.