试题

题目:
计算与化简:
(1)
3-a2
a2+2a+1
+(1-
1
a+1
)÷(1+
1
a-1
)
        
(2)(
c
ab
)2·(-
b
ac
)3÷(-
b
a
)4

答案
解:(1)原式=
3-a2
(a+1)2
+(
a+1
a+1
-
1
a+1
)÷(
a-1
a-1
+
1
a-1

=
3-a2
(a+1)2
+
a
a+1
·
a-1
a

=
3-a2
(a+1)2
+
a-1
a+1

=
3-a2
(a+1)2
+
a2-1
(a+1)2

=
2
(a+1)2

=
2
a2+2a+1

(2)原式=-
c2
a2b2
·
b3
a3c3
·
a4
b4

=-
a4b3c2
a5b6c3

=-
1
ab3c

解:(1)原式=
3-a2
(a+1)2
+(
a+1
a+1
-
1
a+1
)÷(
a-1
a-1
+
1
a-1

=
3-a2
(a+1)2
+
a
a+1
·
a-1
a

=
3-a2
(a+1)2
+
a-1
a+1

=
3-a2
(a+1)2
+
a2-1
(a+1)2

=
2
(a+1)2

=
2
a2+2a+1

(2)原式=-
c2
a2b2
·
b3
a3c3
·
a4
b4

=-
a4b3c2
a5b6c3

=-
1
ab3c
考点梳理
分式的混合运算.
(1)现将括号内的部分通分,再将除法转化为乘法约分,然后通分相加;
(2)先将分子、分母分别乘方,再把除法转化为乘法,然后约分.
本题考查了分式的混合运算,熟悉因式分解是解题的关键.
计算题.
找相似题