试题

题目:
(2001·苏州)化简:(a-
a
a+1
a2-2a
a2-4
·
a+1
a23a+2

答案
解:(a-
a
a+1
a2-2a
a2-4
·
a+1
a23a+2

=[
a(a+1)-a
a+1
(a+2)(a-2)
a(a-2)
·
a+1
(a-2)(a-1)

=
a2
a+1
×
(a+2)(a-2)
a(a-2)
·
a+1
(a-2)(a-1)

=
a2(a+2)
a(a-1)(a-2)

=
a(a+2)
(a-1)(a-2)

解:(a-
a
a+1
a2-2a
a2-4
·
a+1
a23a+2

=[
a(a+1)-a
a+1
(a+2)(a-2)
a(a-2)
·
a+1
(a-2)(a-1)

=
a2
a+1
×
(a+2)(a-2)
a(a-2)
·
a+1
(a-2)(a-1)

=
a2(a+2)
a(a-1)(a-2)

=
a(a+2)
(a-1)(a-2)
考点梳理
分式的混合运算.
本题需先根据分式加减运算的顺序和法则分别进行计算,再把所得结果合并即可.
本题主要考查了分式的混合运算,在解题时要注意运算顺序和结果的符号以及简便方法的运用是本题的关键.
找相似题