试题

题目:
计算化简:
(1)
x2-2x+1
x2-1
÷
x-1
x2+x

(2)
a2
a2+2a
·
a2-4
a-2

答案
解:(1)
x2-2x+1
x2-1
÷
x-1
x2+x

=
(x-1)2
(x-1)(x+1)
×
x(x+1)
x-1

=x;
(2)
a2
a2+2a
·
a2-4
a-2

=
a2
a(a+2)
×
(a-2)(a+2)
a-2

=a.
解:(1)
x2-2x+1
x2-1
÷
x-1
x2+x

=
(x-1)2
(x-1)(x+1)
×
x(x+1)
x-1

=x;
(2)
a2
a2+2a
·
a2-4
a-2

=
a2
a(a+2)
×
(a-2)(a+2)
a-2

=a.
考点梳理
分式的混合运算.
(1)(2)首先把分式的分子、分母分解因式,然后约分化简即可求解.
此题主要考查了分式的混合运算,解题的关键是分式的通分、约分化简.
计算题.
找相似题