试题

题目:
计算:(1)
x+2
x2-6x+9
÷
1
3-x
×
x-3
x+2
      (2)(
x2-1
x2-2x+1
-x+1)÷
x
x-1

答案
解:(1)
x+2
x2-6x+9
÷
1
3-x
×
x-3
x+2

=
x+2
(x-3)2
×(3-x)×
x-3
x+2

=-1;

(2)(
x2-1
x2-2x+1
-x+1)÷
x
x-1

=[
(x-1)(x+1)
(x-1)2
-
(x-1)2
x-1
x-1
x

=
-x2+3x
x-1
×
x-1
x

=-x+3.
解:(1)
x+2
x2-6x+9
÷
1
3-x
×
x-3
x+2

=
x+2
(x-3)2
×(3-x)×
x-3
x+2

=-1;

(2)(
x2-1
x2-2x+1
-x+1)÷
x
x-1

=[
(x-1)(x+1)
(x-1)2
-
(x-1)2
x-1
x-1
x

=
-x2+3x
x-1
×
x-1
x

=-x+3.
考点梳理
分式的混合运算.
(1)首先将能因式分解的分子与分母进行分解因式,再化简即可;
(2)首先将括号里面进行化简再通分,将能因式分解的分子与分母进行分解因式,再化简即可.
此题主要考查了分式的混合运算,正确根据分式的基本性质分解因式是解题关键.
找相似题