试题

题目:
计算:
(1)(
x2
x+2
-
4
x+2
x-2
x

(2)
x-1
x+2
÷
x2-2x+1
x2-4
+
1
x-1

答案
(1)解:原式=
x2-4
x+2
·
x
x-2

=
(x+2)(x-2)
x+2
·
x
x-2

=x;
(2)解:原式=
x-1
x+2
·
(x+2)(x-2)
(x-1)2
+
1
x-1

=
x-2
x-1
+
1
x-1

=
x-2+1
x-1

=1.


(2)原式=
x-1
x+2
·
x2-4
x2-2x+1
+
1
x-1
=
x-1
x+2
·
(x+2)(x-2)
(x-1)2
+
1
x-1
=
x-2
x-1
+
1
x-1
=
x-2+1
x-1
=
x-1
x-1
=1.
(1)解:原式=
x2-4
x+2
·
x
x-2

=
(x+2)(x-2)
x+2
·
x
x-2

=x;
(2)解:原式=
x-1
x+2
·
(x+2)(x-2)
(x-1)2
+
1
x-1

=
x-2
x-1
+
1
x-1

=
x-2+1
x-1

=1.


(2)原式=
x-1
x+2
·
x2-4
x2-2x+1
+
1
x-1
=
x-1
x+2
·
(x+2)(x-2)
(x-1)2
+
1
x-1
=
x-2
x-1
+
1
x-1
=
x-2+1
x-1
=
x-1
x-1
=1.
考点梳理
分式的混合运算.
(1)先计算括号内的同分母的减法运算,再把分子分解,然后把除法化为乘法,再约分即可;
(2)先把除法化为乘法,再把分式的分子和分母因式分解,然后约分后进行分式的加法运算.
本题考查了分式的混合:先把分式的分子或分母因式分解(有括号,先算括号,除法运算化为乘法运算),然后约分,再进行分式的加减运算.
计算题.
找相似题