试题

题目:
计算:
(1)
1
x+1
+
1
x2-1
+
1
1-x

(2)
1
2x+6
+
1
3-x
+
x
2(x2-9)

(3)
2x-6
x2-4x+4
÷(x+3)·
x2+x-6
12-4x

(4)(a-
a
a+1
)÷
a2-2a
a2-4
·
a+1
a2+3a+2

(5)(
x+2
x2+2x
-
x-1
x2-4x+4
)÷
x-4
x
·(2-x)2
(6)
-a2
a2-1
÷(
a
a-1
)
2
·(-
a+1
a-1
2
答案
解:(1)原式=
x-1+1-(x+1)
x2-1

=
-1
x2-1

=
1
1-x2


(2)原式=
1
2(x+3)
-
1
x-3
+
x
2(x-3)(x+3)

=
x-3-2(x+3)+x
2(x-3)(x+3)

=
-9
2(x-3)(x+3)

=
9
2(9-x2)

=
9
18-2x2


(3)原式=
2(x-3)
(x-2)2
×
1
x+3
×
(x-2)(x+3)
4(3-x)

=
1
4-2x


(4)原式=
a2+a-a
a+1
×
(a-2)(a+2)
a(a-2)
×
a+1
(a+2)(a+1)

=
a
a+1


(5)原式=[
x+2
x(x+2)
-
x-1
(x-2)2
x
x-4
·(2-x)2
=
(x-2)2-(x-1)·x
x(x-2)2
×
x
x-4
·(2-x)2
=
4-3x
x-4


(6)原式=
a2
(1- a)(1+a)
×
(a-1)2
a2
×
(a+1)2
(a-1)2

=
1+a
1-a

解:(1)原式=
x-1+1-(x+1)
x2-1

=
-1
x2-1

=
1
1-x2


(2)原式=
1
2(x+3)
-
1
x-3
+
x
2(x-3)(x+3)

=
x-3-2(x+3)+x
2(x-3)(x+3)

=
-9
2(x-3)(x+3)

=
9
2(9-x2)

=
9
18-2x2


(3)原式=
2(x-3)
(x-2)2
×
1
x+3
×
(x-2)(x+3)
4(3-x)

=
1
4-2x


(4)原式=
a2+a-a
a+1
×
(a-2)(a+2)
a(a-2)
×
a+1
(a+2)(a+1)

=
a
a+1


(5)原式=[
x+2
x(x+2)
-
x-1
(x-2)2
x
x-4
·(2-x)2
=
(x-2)2-(x-1)·x
x(x-2)2
×
x
x-4
·(2-x)2
=
4-3x
x-4


(6)原式=
a2
(1- a)(1+a)
×
(a-1)2
a2
×
(a+1)2
(a-1)2

=
1+a
1-a
考点梳理
分式的混合运算.
(1)、(2)先通分,然后合并同类项、约分;
(3)、(4)、(6)先把除法统一为乘法,化简后再算乘法;
(5)首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简.
本题主要考查了分式的混合运算.通分、因式分解和约分是解答的关键.因式分解是分式也是整式恒等变形中非常重要、经常要用到的数学方法.
计算题.
找相似题