试题
题目:
(2007·自贡)如图,AB是⊙O的直径,AE平分∠BAC交⊙O于点E,过E作⊙O的切线ME交AC于点D.试判断△AED的形状,并说明理由.
答案
解:△AED为直角三角形,(1分)
理由:连接BE;(2分)
∵AB是直径,
∴∠BEA=90°,(3分)
∴∠B+∠BAE=90°;(4分)
又∵AE平分∠BAC,
∴∠BAE=∠EAD(5分);
∵ME切⊙O于点E,
∴∠AED=∠B,
∴∠AED+∠EAD=90°,(6分)
∴△AED是直角三角形.(7分)
解:△AED为直角三角形,(1分)
理由:连接BE;(2分)
∵AB是直径,
∴∠BEA=90°,(3分)
∴∠B+∠BAE=90°;(4分)
又∵AE平分∠BAC,
∴∠BAE=∠EAD(5分);
∵ME切⊙O于点E,
∴∠AED=∠B,
∴∠AED+∠EAD=90°,(6分)
∴△AED是直角三角形.(7分)
考点梳理
考点
分析
点评
专题
勾股定理的逆定理;角平分线的性质;圆周角定理;弦切角定理.
先连接BE,根据弦切角定理,将∠AED+∠EAD转化为直角三角形的两锐角和解答.
本题是一道结论开放性题目,考查了同学们利用角平分线的性质、圆周角定理、弦切角定理解决问题的能力,有利于培养同学们的发散思维能力.
压轴题.
找相似题
如果一个三角形的三边a,b,c满足a
2
+b
2
-c
2
+338=10a+24b+26c,那么该三角形是
直角
直角
三角形.
如图,AD=8cm,CD=6cm,AD⊥CD,BC=24cm,AB=26cm,则S
四边形ABCD
=
96
96
cm
2
.
已知△ABC的一边长为10,另两边长分别是方程x
2
-14x+48=0的两个根,若用一圆形纸片将此三角形完全覆盖,则该圆形纸片的最小半径是
5
5
.
已知⊙O的半径OA为1.弦AB的长为
2
,若在⊙O上找一点C,使AC=
3
,则∠BAC=
75或15
75或15
°.
在△ABC中,若AB
2
+BC
2
=AC
2
,则∠A+∠C=
90
90
°.