试题
题目:
已知△ABC的一边长为10,另两边长分别是方程x
2
-14x+48=0的两个根,若用一圆形纸片将此三角形完全覆盖,则该圆形纸片的最小半径是
5
5
.
答案
5
解:解方程x
2
-14x+48=0得:x
1
=6,x
2
=8,
即△ABC的三边长为AC=6,BC=8,AB=10,
∵AC
2
+BC
2
=6
2
+8
2
=100,AB
2
=100,
∴AB
2
=AC
2
+BC
2
,
∴∠C=90°
∵若用一圆形纸片将此三角形完全覆盖,
则该圆形纸片正好是△ABC的外接圆,
∴△ABC的外接圆的半径是
1
2
AB=5,
故答案为:5.
考点梳理
考点
分析
点评
三角形的外接圆与外心;勾股定理的逆定理.
求出方程的解,根据勾股定理的逆定理得出三角形ABC是直角三角形,根据已知得出圆形正好是△ABC的外接圆,即可求出答案.
本题考查了勾股定理的逆定理,三角形的外接圆与外心,解一元二次方程的应用.
找相似题
如果一个三角形的三边a,b,c满足a
2
+b
2
-c
2
+338=10a+24b+26c,那么该三角形是
直角
直角
三角形.
如图,AD=8cm,CD=6cm,AD⊥CD,BC=24cm,AB=26cm,则S
四边形ABCD
=
96
96
cm
2
.
已知⊙O的半径OA为1.弦AB的长为
2
,若在⊙O上找一点C,使AC=
3
,则∠BAC=
75或15
75或15
°.
在△ABC中,若AB
2
+BC
2
=AC
2
,则∠A+∠C=
90
90
°.
已知a、b、c是△ABC的三边,且满足(c
2
-a
2
-b
2
)
2
+|a-b|=0,则△ABC的形状为
等腰直角三角形
等腰直角三角形
.