试题
题目:
在Rt△ABC中,∠C=90°,AC=7,BC=24,AB=25,P为三内角平分线交点,则点P到各边的距离都等于
3
3
.
答案
3
解:作PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,连接PA,PB,PC,
则△BDP≌△BFP,△CDP≌△CEP,△AEP≌△AFP,
∴BD=BF,CD=CE,AE=AF,
又∵∠C=90,PD⊥BC于D,PE⊥AC于E,且P为△ABC三条角平分线的交点,
∴四边形PECD是正方形,
则点P到三边AB、AC、BC的距离=CD,
∴AB=24-CD+7-CD=25,
∴CD=3,
即点P到三边AB、AC、BC的距离为3,
故答案为3.
考点梳理
考点
分析
点评
专题
角平分线的性质;三角形的面积;勾股定理的逆定理.
连接PA,PB,PC,利用角的平分线上的点到角的两边的距离相等可知△BDP≌△BFP,△CDP≌△CEP,△AEP≌△AFP,BD=BF,CD=CE,AE=AF,又因为点O到三边AB、AC、BC的距离是CD,解得CD=2,即可得出点P到各边的距离.
本题主要考查垂直平分线上的点到线段两段的距离相等的性质和边的和差关系,难度适中.
应用题.
找相似题
如果一个三角形的三边a,b,c满足a
2
+b
2
-c
2
+338=10a+24b+26c,那么该三角形是
直角
直角
三角形.
如图,AD=8cm,CD=6cm,AD⊥CD,BC=24cm,AB=26cm,则S
四边形ABCD
=
96
96
cm
2
.
已知△ABC的一边长为10,另两边长分别是方程x
2
-14x+48=0的两个根,若用一圆形纸片将此三角形完全覆盖,则该圆形纸片的最小半径是
5
5
.
已知⊙O的半径OA为1.弦AB的长为
2
,若在⊙O上找一点C,使AC=
3
,则∠BAC=
75或15
75或15
°.
在△ABC中,若AB
2
+BC
2
=AC
2
,则∠A+∠C=
90
90
°.