试题
题目:
△ABC中,AC=6,BC=8,AB=10,内切圆⊙I与三边分别切于点D、E、F,O是△ABC外接圆的圆心,则IO的长为
5
5
.
答案
5
解:∵
△ABC中,AC=6,BC=8,AB=10,
∴6
2
+8
2
=10
2
,
∴△ABC是直角三角形,
∴内切圆半径为:
6+8-10
2
=2,
外接圆半径为:5,
∵内切圆⊙I与三边分别切于点D、E、F,
∴∠IFC=∠IEC=∠C=90°,
∵FI=EI=2,
∴四边形IECF是正方形,
∴FC=EC=2,
∴AF=AD=4,
∴DO=1,
∵DI=2,
∴OI=
1
2
+
2
2
=
5
.
故答案为:
5
.
考点梳理
考点
分析
点评
三角形的内切圆与内心;勾股定理的逆定理;三角形的外接圆与外心.
首先利用直角三角形的判定得出△ABC是直角三角形,进而得出三角形外接圆与内切圆半径,再利用切线长定理、切线的性质定理得出DO的长,进而求出即可.
此题主要考查了直角三角形的判定和切线长定理、切线的性质定理等知识,根据已知得出AF=AD=4是解题关键.
找相似题
如果一个三角形的三边a,b,c满足a
2
+b
2
-c
2
+338=10a+24b+26c,那么该三角形是
直角
直角
三角形.
如图,AD=8cm,CD=6cm,AD⊥CD,BC=24cm,AB=26cm,则S
四边形ABCD
=
96
96
cm
2
.
已知△ABC的一边长为10,另两边长分别是方程x
2
-14x+48=0的两个根,若用一圆形纸片将此三角形完全覆盖,则该圆形纸片的最小半径是
5
5
.
已知⊙O的半径OA为1.弦AB的长为
2
,若在⊙O上找一点C,使AC=
3
,则∠BAC=
75或15
75或15
°.
在△ABC中,若AB
2
+BC
2
=AC
2
,则∠A+∠C=
90
90
°.