试题
题目:
将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是
1
36
1
36
.
答案
1
36
解:因为将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,按出现数字的不同共6×6×6=216种情况,其中数字分别为3,4,5,是直角三角形三边长时,有6种情况,所以其概率为
1
36
.
故本题答案为:
1
36
.
考点梳理
考点
分析
点评
概率公式;勾股定理的逆定理.
三粒均匀的正六面体骰子同时掷出共出现216种情况,而边长能构成直角三角形的数字为3、4、5,含这三个数字的情况有6种,故由概率公式计算即可.
本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
m
n
.边长为3,4,5的三角形组成直角三角形.
找相似题
如果一个三角形的三边a,b,c满足a
2
+b
2
-c
2
+338=10a+24b+26c,那么该三角形是
直角
直角
三角形.
如图,AD=8cm,CD=6cm,AD⊥CD,BC=24cm,AB=26cm,则S
四边形ABCD
=
96
96
cm
2
.
已知△ABC的一边长为10,另两边长分别是方程x
2
-14x+48=0的两个根,若用一圆形纸片将此三角形完全覆盖,则该圆形纸片的最小半径是
5
5
.
已知⊙O的半径OA为1.弦AB的长为
2
,若在⊙O上找一点C,使AC=
3
,则∠BAC=
75或15
75或15
°.
在△ABC中,若AB
2
+BC
2
=AC
2
,则∠A+∠C=
90
90
°.