试题
题目:
化简
a
-
b
a
+
b
+(
a
a+
ab
-
b
b-
ab
)÷
1
b
.
答案
解:原式=
a
-
b
a
+
b
+(
1
a
+
b
-
1
b
-
a
)·
b
=
a
-
b
a
+
b
+
1
a
+
b
·
b
-
1
b
-
a
·
b
=
a
a
+
b
+
b
a
-
b
=
a+b
a-b
.
解:原式=
a
-
b
a
+
b
+(
1
a
+
b
-
1
b
-
a
)·
b
=
a
-
b
a
+
b
+
1
a
+
b
·
b
-
1
b
-
a
·
b
=
a
a
+
b
+
b
a
-
b
=
a+b
a-b
.
考点梳理
考点
分析
点评
二次根式的化简求值.
首先利用约分计算括号内的,再计算除法,最后计算加减.
此题考查了二次根式的混合运算,在计算的过程中,要善于运用因式分解的方法进行约分计算.
找相似题
(2006·济南)已知x=
2
,则代数式
x
x-1
的值为( )
当
x=
3
-1
,求代数式x
2
+2x-1的值.
先化简,再求值:
6
x
3
-
3
4
4x
3
+x
12
x
,其中x=2.
已知x,y都是实数,且(x+y-1)
2
与
2x-y+4
互为相反数,求实数y
x
的负倒数.
化简求值
a
2
-2a+1
-
1+4a+4
a
2
,其中
a=
3
-1
.