试题

题目:
tanα=
1
2
,则
sinα+2cosα
sinα-cosα
=
-5
-5

答案
-5

解:∵tanα=
1
2

sinα+2cosα
sinα-cosα

=
tanα+2
tanα-1

=
1
2
+2
1
2
-1

=-5.
故答案为:-5.
考点梳理
同角三角函数的关系.
tanα=
1
2
代入
sinα+2cosα
sinα-cosα
=
tanα+2
tanα-1
,运算求得结果.
本题主要考查同角三角函数的基本关系的应用,属于基础题.
找相似题