试题
题目:
求不超过
(
7
+
5
)
6
的值的最大整数.
答案
解:
(
7
+
5
)
2
=12+2
35
.
(
7
+
5
)
4
=
(12+2
35
)
2
=144+48
35
+140=284+48
35
.
(
7
+
5
)
6
=(12+2
35
)(284+48
35
),
=3408+576
35
+568
35
+3360,
=6768+1144
35
,
≈13535.9.
∴最大整数值为13535.
解:
(
7
+
5
)
2
=12+2
35
.
(
7
+
5
)
4
=
(12+2
35
)
2
=144+48
35
+140=284+48
35
.
(
7
+
5
)
6
=(12+2
35
)(284+48
35
),
=3408+576
35
+568
35
+3360,
=6768+1144
35
,
≈13535.9.
∴最大整数值为13535.
考点梳理
考点
分析
点评
专题
二次根式的化简求值;多项式乘多项式;完全平方公式.
先用完全平方公式计算出
(
7
+
5
)
2
的值,再用多项式乘以多项式的法则计算,然后根据
35
的值,确定代数式的最大整数.
本题考查的是二次根式的化简求值,用完全平方公式求出
(
7
+
5
)
2
和
(
7
+
5
)
4
的值,然后用多项式的乘法法则进行计算,根据
35
的近似值确定代数式的最大值.
计算题.
找相似题
(2006·济南)已知x=
2
,则代数式
x
x-1
的值为( )
当
x=
3
-1
,求代数式x
2
+2x-1的值.
先化简,再求值:
6
x
3
-
3
4
4x
3
+x
12
x
,其中x=2.
已知x,y都是实数,且(x+y-1)
2
与
2x-y+4
互为相反数,求实数y
x
的负倒数.
化简求值
a
2
-2a+1
-
1+4a+4
a
2
,其中
a=
3
-1
.