试题
题目:
在正方形ABCD中,P是BC上一点,且BP=3PC,Q是CD得中点.
(1)证明△ADQ∽△QCP;(2)求证:AQ⊥QP.
答案
解:(1)∵BP=3PC,Q是CD的中点
∴
CP
DQ
=
CQ
AD
=
1
2
,又∵∠ADQ=∠QCP=90°,
∴△ADQ∽△QCP;
(2)∵△ADQ∽△QCP,
∴∠AQD=∠QPC,∠DAQ=∠PQC,
∴∠PQC+∠DQA=∠DAQ+∠AQD=90°,
∴AQ⊥QP.
解:(1)∵BP=3PC,Q是CD的中点
∴
CP
DQ
=
CQ
AD
=
1
2
,又∵∠ADQ=∠QCP=90°,
∴△ADQ∽△QCP;
(2)∵△ADQ∽△QCP,
∴∠AQD=∠QPC,∠DAQ=∠PQC,
∴∠PQC+∠DQA=∠DAQ+∠AQD=90°,
∴AQ⊥QP.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;正方形的性质.
(1)根据BP=3PC和Q是CD的中点,可以求得
CP
DQ
=
CQ
AD
,即可求证△ADQ∽△QCP;
(2)根据△ADQ∽△QCP可以求得∠PQC+∠DQA=90°,即可解题.
本题考查了相似三角形对应角相等的性质,考查了相似三角形的判定,本题中求证△ADQ∽△QCP是解题的关键.
证明题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?