试题
题目:
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
A.11
B.10
C.9
D.8
答案
D
解:∵在·ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,
∴∠BAF=∠DAF,
∵AB∥DF,AD∥BC,
∴∠BAF=∠F=∠DAF,∠BAE=∠AEB,
∴AB=BE=6,AD=DF=9,
∴△ADF是等腰三角形,△ABE是等腰三角形,
∵AD∥BC,
∴△EFC是等腰三角形,且FC=CE,
∴EC=FC=9-6=3,
在△ABG中,BG⊥AE,AB=6,BG=4
2
,
∴AG=
AB
2
-B
G
2
=2,
∴AE=2AG=4,
∴△ABE的周长等于16,
又∵△CEF∽△BEA,相似比为1:2,
∴△CEF的周长为8.
故选D.
考点梳理
考点
分析
点评
相似三角形的判定与性质;勾股定理;平行四边形的性质.
判断出△ADF是等腰三角形,△ABE是等腰三角形,DF的长度,继而得到EC的长度,在Rt△BGE中求出GE,继而得到AE,求出△ABE的周长,根据相似三角形的周长之比等于相似比,可得出△EFC的周长.
本题主要考查了勾股定理、相似三角形、等腰三角形的性质,注意掌握相似三角形的周长之比等于相似比,此题难度较大.
找相似题
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?
如图所示,已知AE为⊙O的直径,AD为△ABC的BC边上的高.
(1)求证:∠BAE=∠DAC;
(2)若AB=10,AD=6,CD=
2
3
,求⊙O的面积.