试题
题目:
已知:如图,在△ABC中,D为AB边上一点,∠ACB=108°,AC=BC,AC
2
=AB·AD.试说明:△ADC和△BDC都是等腰三角形.
答案
证明:∵∠ACB=108°,AC=BC,
∴∠A=∠B=36°.
∵AC
2
=AD·AB,∠A=∠A,
∴△ACD∽△ABC,
∴∠ACD=∠B=36°,
∵AC=BC,
∴∠A=∠ACD=∠B=36°,
∴△ADC是等腰三角形,
∵∠BDC=∠A+∠ACD=72°,
∵∠B=36°,
∴∠BCD=180°-36°-72°=72°,
∴∠BDC=∠BCD,
∴△BCD是等腰三角形.
证明:∵∠ACB=108°,AC=BC,
∴∠A=∠B=36°.
∵AC
2
=AD·AB,∠A=∠A,
∴△ACD∽△ABC,
∴∠ACD=∠B=36°,
∵AC=BC,
∴∠A=∠ACD=∠B=36°,
∴△ADC是等腰三角形,
∵∠BDC=∠A+∠ACD=72°,
∵∠B=36°,
∴∠BCD=180°-36°-72°=72°,
∴∠BDC=∠BCD,
∴△BCD是等腰三角形.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质.
可通过证角相等来证三角形是等腰三角形.根据给出的比例关系式子,我们不难得出△ACD∽△ABC.那么可得出∠ACD=∠B,AC=DC,通过等边对等角我们可得出∠A=∠ACD,那么△ACD就是等腰三角形.证△CDB可通过角的度数进行证明(根据∠A的度数和三角形的内角和).
本题主要考查了相似三角形的判定和等腰三角形的判定,根据题中的条件得出相似三角形进而得出对应角相等是解题的关键.
证明题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?