试题

题目:
青果学院如图,在梯形ABCD中,AD∥BC,∠B=∠ACD
(1)求证:△ABC∽△DCA;
(2)若AC=6,BC=9,试求梯形ABCD的中位线的长度.
答案
解:(1)∵AD∥BC,
∴∠ACB=∠CAD,
又∵∠B=∠ACD,
∴△ABC∽△DCA(两角对应相等,两三角形相似);

(2)∵△ABC∽△DCA,
AC
AD
=
BC
AC

即AC2=BC·AD.
∵AC=6,BC=9,
∴62=9·AD.
解得AD=4,
∴梯形ABCD的中位线长为
4+9
2
=6.5.
解:(1)∵AD∥BC,
∴∠ACB=∠CAD,
又∵∠B=∠ACD,
∴△ABC∽△DCA(两角对应相等,两三角形相似);

(2)∵△ABC∽△DCA,
AC
AD
=
BC
AC

即AC2=BC·AD.
∵AC=6,BC=9,
∴62=9·AD.
解得AD=4,
∴梯形ABCD的中位线长为
4+9
2
=6.5.
考点梳理
相似三角形的判定与性质;梯形中位线定理.
(1)由AD∥BC,可得∠ACB=∠DAC,再利用∠B=∠ACD,得出△ABC∽△DCA;
(2)根据两组角相等可求得△ABC∽△DCA,可得AC2=BC·AD,进而求得AD的值,根据梯形的中位线定理即可求得中位线的长度.
此题主要考查梯形的中位线定理和相似三角形的有关知识,利用相似三角形的性质得出
AC
AD
=
BC
AC
是解题关键.
几何综合题.
找相似题