试题
题目:
如图,在△ABC中,BD⊥AC于D,CE⊥AB于E.
(1)求证:△ABD∽△ACE;
(2)连接DE,求证:∠ADE=∠ABC.
答案
(1)证明:
∵BD⊥AC于D,CE⊥AB于E.
∴∠ADB=∠AEC=90°,
∵∠BAD=∠CAE,
∴△ABD∽△ACE;
(2)证明:
∵△ABD∽△ACE,
∴
AD
AE
=
AB
AC
,
∵∠BAD=∠CAE,
∴△ADE∽△ACB,
∴∠ADE=∠ABC.
(1)证明:
∵BD⊥AC于D,CE⊥AB于E.
∴∠ADB=∠AEC=90°,
∵∠BAD=∠CAE,
∴△ABD∽△ACE;
(2)证明:
∵△ABD∽△ACE,
∴
AD
AE
=
AB
AC
,
∵∠BAD=∠CAE,
∴△ADE∽△ACB,
∴∠ADE=∠ABC.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质.
(1)由垂直的性质可得:∠ADB=∠AEC=90°,又因为∠BAD=∠CAE,所以△ABD∽△ACE;
(2)由(1)可知△ABD∽△ACE,所以
AD
AE
=
AB
AC
,又因为∠BAD=∠CAE,所以△ADE∽△ACB,由相似三角形的性质:对应角相等即可证明:∠ADE=∠ABC.
本题考查了垂直的定义、相似三角形的判定和性质,题目难度不大,但设计很新颖.
证明题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?