试题
题目:
如图,在同一平面内将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AFG=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合)
(1)求证:△ABE∽△DCA.
(2)若BD=
1
2
,求CE.
答案
(1)证明:∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°,
∴∠BAE=∠CDA(2分),
又∵∠B=∠C=45°,
∴△ABE∽△DCA(4分);
(2)解:∵△ABE∽△DCA,
∴
BE
CA
=
BA
CD
,
由依题意可知CA=BA=
2
,
∴
BE
2
=
2
CD
,
∴
2-CE
2
=
2
2-BD
,
∴
2-CE
2
=
2
2-
1
2
,
解得CE=
2
3
.
(1)证明:∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°,
∴∠BAE=∠CDA(2分),
又∵∠B=∠C=45°,
∴△ABE∽△DCA(4分);
(2)解:∵△ABE∽△DCA,
∴
BE
CA
=
BA
CD
,
由依题意可知CA=BA=
2
,
∴
BE
2
=
2
CD
,
∴
2-CE
2
=
2
2-BD
,
∴
2-CE
2
=
2
2-
1
2
,
解得CE=
2
3
.
考点梳理
考点
分析
点评
相似三角形的判定与性质;等腰直角三角形.
(1)由图形得∠BAE=∠BAD+45°,由外角定理,得∠CDA=∠BAD+45°,可得∠BAE=∠CDA,根据∠B=∠C=45°,证明两个三角形相似;
(2)由勾股定理,得CA=BA=
2
,由(1)的相似三角形的性质,利用相似比即可求出CE.
本题考查了等腰直角三角形的性质,相似三角形的判定与性质.关键是通过图形的旋转,将条件“相对集中”.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?