试题
题目:
如图,D是△ABC的BC边上一点且CD=AB,∠BDA=∠BAD,AE是△ABD的中线.
求证:∠C=∠BAE.
答案
证明:延长AE到F,使EF=AE,连接DF,
∵AE是△ABD的中线
∴BE=ED,
在△ABE与△FDE中
∵
BE=DE
∠AEB=∠DEF
AE=EF
,
∴△ABE≌△FDE(SAS),
∴AB=DF,∠BAE=∠EFD,
∵∠ADB是△ADC的外角,
∴∠DAC+∠ACD=∠ADB=∠BAD,
∴∠BAE+∠EAD=∠BAD,∠BAE=∠EFD,
∴∠EFD+∠EAD=∠DAC+∠ACD,
∴∠ADF=∠ADC,
∵AB=DC,∴DF=DC,
在△ADF与△ADC中
∵
AD=AD
∠ADF=∠ADC
FD=DC
,
∴△ADF≌△ADC(SAS)
∴∠C=∠AFD=∠BAE.
证明:延长AE到F,使EF=AE,连接DF,
∵AE是△ABD的中线
∴BE=ED,
在△ABE与△FDE中
∵
BE=DE
∠AEB=∠DEF
AE=EF
,
∴△ABE≌△FDE(SAS),
∴AB=DF,∠BAE=∠EFD,
∵∠ADB是△ADC的外角,
∴∠DAC+∠ACD=∠ADB=∠BAD,
∴∠BAE+∠EAD=∠BAD,∠BAE=∠EFD,
∴∠EFD+∠EAD=∠DAC+∠ACD,
∴∠ADF=∠ADC,
∵AB=DC,∴DF=DC,
在△ADF与△ADC中
∵
AD=AD
∠ADF=∠ADC
FD=DC
,
∴△ADF≌△ADC(SAS)
∴∠C=∠AFD=∠BAE.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;全等三角形的判定与性质.
延长AE到F,使EF=AE,连接DF,可证明△ABE≌△FDE,则∠BAE=∠EFD,∠B=∠EDF,再由外角的性质得出∠ADF=∠ADC,则△ADF≌△ADC(SAS),则∠AFD=∠C,从而得出∠C=∠BAE.
本题考查了全等三角形的判定和性质,解题的关键是证明两个三角形全等.
证明题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?