试题

题目:
如图Ⅰ,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,则不难证明S1=S2+S3青果学院
(1)如图Ⅱ,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1、S2、S3表示,设BC=a,AC=b,AB=c,证明:S1=S2+S3
(2)如图Ⅲ,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1、S2、S3之间的关系.(不必证明)
(3)若分别以直角三角形ABC三边为边向外作三个正多边形,其面积分别用S1、S2、S3表示,请你猜想S1、S2、S3之间的关系?.(不必证明)
答案
解:(1)∵S3=
π
8
AC2,S2=
π
8
BC2,S1=
π
8
AB2
π
8
AC2+
π
8
BC2=
π
8
AB2
π
8
b2+
π
8
a2=
π
8
c2
在Rt△ABC中,
∵b2+a2=c2
∴S2+S3=S1

(2)S1=S2+S3
理由:由题意可得出:S1=
3
4
AB2,S2=
3
4
BC2,S3=
3
4
AC2
∴则S1=
3
4
c2,S2=
3
4
a2,S3=
3
4
b2
∴S2+S3=
3
4
(a2+b2)=
3
4
c2=S1
即S1=S2+S3

(3)由(1)(2)可得出:S1=S2+S3
解:(1)∵S3=
π
8
AC2,S2=
π
8
BC2,S1=
π
8
AB2
π
8
AC2+
π
8
BC2=
π
8
AB2
π
8
b2+
π
8
a2=
π
8
c2
在Rt△ABC中,
∵b2+a2=c2
∴S2+S3=S1

(2)S1=S2+S3
理由:由题意可得出:S1=
3
4
AB2,S2=
3
4
BC2,S3=
3
4
AC2
∴则S1=
3
4
c2,S2=
3
4
a2,S3=
3
4
b2
∴S2+S3=
3
4
(a2+b2)=
3
4
c2=S1
即S1=S2+S3

(3)由(1)(2)可得出:S1=S2+S3
考点梳理
相似三角形的判定与性质;勾股定理.
(1)分别用AB、BC和AC表示出 S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系;
(2)分别用AB、BC和AC表示出 S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系;
(3)分别用AB、BC和AC表示出 S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系.
此题主要考查了三角形、正方形、圆的面积计算以及勾股定理的应用,解题关键是熟练掌握勾股定理的公式,难度一般.
找相似题