答案
(1)解:∵四边形ABCD是正方形,
∴∠B=∠BAD=∠BCD=∠ADF=90°,AB=AD=BC=1,
∵E为BC中点,
∴BE=
BC=
,
由勾股定理得:AE=
=
,
在△ABE和△ADF中
∴△ABE≌△ADF(ASA),
∴AF=AE=
,∠FAD=∠EAB,
∵∠BAD=90°,
∴∠EAF=∠EAD+∠EAB+∠EAD=∠BAD=90°,
∴△AEF的面积是
×AE×AF=
×
×
=
.

(2)证明:∵∠BCD=∠EAF=90°,
∴∠BCD+∠EAF=180°,
∴C、E、A、F四点共圆,
∴∠CFE=∠CAE,∠FCA=∠FEA,
∴△AEM∽△FCM.
(3)解:∵S
△CEF:S
△AEF=1:2,
∴2×
×CE×CF=
×AE
2,
∵AE
2=AB
2+BE
2,CE=BC-BE=AB-BE,CF=CD+DF=AB+BE,
∴AB
2+BE
2=2(AB-BE)(AB+BE)=2AB
2-2BE
2,
AB
2=3BE
2,
AB=
BE,
∴
=
=
=
=
,
即CE:CF=(2-
):1.
(1)解:∵四边形ABCD是正方形,
∴∠B=∠BAD=∠BCD=∠ADF=90°,AB=AD=BC=1,
∵E为BC中点,
∴BE=
BC=
,
由勾股定理得:AE=
=
,
在△ABE和△ADF中
∴△ABE≌△ADF(ASA),
∴AF=AE=
,∠FAD=∠EAB,
∵∠BAD=90°,
∴∠EAF=∠EAD+∠EAB+∠EAD=∠BAD=90°,
∴△AEF的面积是
×AE×AF=
×
×
=
.

(2)证明:∵∠BCD=∠EAF=90°,
∴∠BCD+∠EAF=180°,
∴C、E、A、F四点共圆,
∴∠CFE=∠CAE,∠FCA=∠FEA,
∴△AEM∽△FCM.
(3)解:∵S
△CEF:S
△AEF=1:2,
∴2×
×CE×CF=
×AE
2,
∵AE
2=AB
2+BE
2,CE=BC-BE=AB-BE,CF=CD+DF=AB+BE,
∴AB
2+BE
2=2(AB-BE)(AB+BE)=2AB
2-2BE
2,
AB
2=3BE
2,
AB=
BE,
∴
=
=
=
=
,
即CE:CF=(2-
):1.