试题
题目:
如图,在△ABC中,DE∥FG∥BC,AD:DF:FB=3:2:1,则△ADE、四边形DFGE、四边形FBCG的面积比为( )
A.3:2:1
B.9:4:1
C.9:16:11
D.9:25:36
答案
C
解:∵DE∥FG∥BC,
∴△ADE∽△AFG∽△ABC,
∵AD:DF:FB=3:2:1,
∴AD:AF:AB=3:5:6,
∴S
△ADE
:S
△AFG
:S
△ABC
=9:25:36,
设△ADE的面积是9a,则△AFG和△ABC的面积分别是25a,36a,
则S
四边形DFGE
=S
△AFG
-S
△ADE
=16a,S
四边形FBCG
=S
△ABC
-S
△AFG
=11a,
∴S
△ADE
:S
四边形DFGE
:S
四边形FBCG
=9:16:11.
故选C.
考点梳理
考点
分析
点评
相似三角形的判定与性质.
由DE∥FG∥BC,可得△ADE∽△AFG∽△ABC,又由AD:DF:FB=3:2:1,利用相似三角形的面积比等于相似比的平方,即可求得S
△ADE
:S
△AFG
:S
△ABC
=9:25:36,然后设△ADE的面积是9a,则△AFG和△ABC的面积分别是25a,36a,即可求两个梯形的面积,继而求得答案.
此题考查了相似三角形的判定与性质.此题难度适中,解题的关键是掌握相似三角形面积的比等于相似比的平方.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?