试题
题目:
如图,在正方形ABCD中,点E在AB边上,且AE:EB=2:1,AF⊥DE于G且交BC于F,则四边形BEGF与△ABF的面积之比为( )
A.1:9
B.4:9
C.9:13
D.4:13
答案
B
解:∵AF⊥DE,∴∠AGE=90°,
∴△AEG∽△AFB,
EG
AG
=
BF
AB
,
∵AF⊥DE,
∴∠BAF=∠ADE,
又AD=AB,
∴△ADE≌△ABF,
∴BF=AE,
EG
AG
=
BF
AB
=
2
3
,
S
△AEG
S
△ABF
=
4
13
,
S
四边形BEGF
S
△ABF
=
4
13-4
=
4
9
.
故选B.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质.
由题中条件可得△ADE≌△ABF,即BF=AE,可得出BF与AB的比值,又有△AEG∽△AFB,可得出其对应边的比,进而可得出两个三角形的面积比,进而可得出结论.
本题主要考查了正方形的性质以及相似三角形的判定及性质问题,能够熟练掌握并能进行一些简答的计算问题.
计算题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?