试题
题目:
如图,△ABC中,BC=30,高AD=18,作矩形PQRS,使得P、S分别落在AB、AC边上,Q、R落在BC边上.
(1)求证:△APS∽△ABC;
(2)如矩形PQRS是正方形,求它的边长;
(3)如AP:PB=1:2,求矩形PQRS的面积.
答案
(1)证明:∵四边形PQRS是矩形,
∴PS∥QR,
即PS∥BC,
∴△APS∽△ABC;
(2)解:∵四边形PQRS是正方形,
∴PS=PQ=SR,PS∥QR,
∵AD是△ABC得高,
即AD⊥BC,
∴AM⊥PS,
即AM是△APS的高,
∵△APS∽△ABC,
∴
PS
BC
=
AM
AD
,
设PS=x,
∵BC=30,高AD=18,
∴AM=18-x,
∴
x
30
=
18-x
18
,
解得:x=
45
4
,
∴它的边长为:
45
4
;
(3)解:∵四边形PSRQ是矩形,
∴PQ⊥QR,
∵AD是△ABC的高,
∴AD⊥BC,
∴PQ∥AD,
∴△PBQ∽△ABD,
∴PQ:AD=BP:BA,
∵AP:PB=1:2,
∴PQ=
2
3
AD=
2
3
×18=12,
∵△APS∽△ABC,
∴PS:BC=AP:AB=1:3,
∴PS=
1
3
BC=10,
∴矩形PQRS的面积为:PS·PQ=10×12=120.
(1)证明:∵四边形PQRS是矩形,
∴PS∥QR,
即PS∥BC,
∴△APS∽△ABC;
(2)解:∵四边形PQRS是正方形,
∴PS=PQ=SR,PS∥QR,
∵AD是△ABC得高,
即AD⊥BC,
∴AM⊥PS,
即AM是△APS的高,
∵△APS∽△ABC,
∴
PS
BC
=
AM
AD
,
设PS=x,
∵BC=30,高AD=18,
∴AM=18-x,
∴
x
30
=
18-x
18
,
解得:x=
45
4
,
∴它的边长为:
45
4
;
(3)解:∵四边形PSRQ是矩形,
∴PQ⊥QR,
∵AD是△ABC的高,
∴AD⊥BC,
∴PQ∥AD,
∴△PBQ∽△ABD,
∴PQ:AD=BP:BA,
∵AP:PB=1:2,
∴PQ=
2
3
AD=
2
3
×18=12,
∵△APS∽△ABC,
∴PS:BC=AP:AB=1:3,
∴PS=
1
3
BC=10,
∴矩形PQRS的面积为:PS·PQ=10×12=120.
考点梳理
考点
分析
点评
相似三角形的判定与性质;矩形的性质;正方形的性质.
(1)由四边形PQRS是矩形,可得PS∥QR,即可得:△APS∽△ABC;
(2)由矩形PQRS是正方形,可设PS=x,然后利用相似三角形的对应高的比等于相似比,即可得方程
x
30
=
18-x
18
,解此方程即可求得答案;
(3)由相似三角形对应边成比例,即可求得PQ与PS的长,继而可求得矩形PQRS的面积.
此题考查了相似三角形的判定与性质、矩形的性质以及正方形的性质.此题难度适中,注意掌握数形结合思想与方程思想的应用.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?