试题
题目:
感知:如图①,∠C=∠ABD=∠E=90°,可知△ACB∽△BED.(不要求证明)
拓展:如图②,∠C=∠ABD=∠E.求证:△ACB∽△BED.
应用:如图③,∠C=∠ABD=∠E=60°,AC=4,BC=1,则△ABD与△BDE的面积比为
13:3
13:3
.
答案
13:3
拓展:证明:∵∠ABE=∠C+∠CAB,∠ABE=∠ABD+∠DBE,∠C=∠ABD,
∴∠CAB=∠DBE,
∵∠C=∠E,
∴△ACB∽△BED;
应用:解:∵∠ABE=∠C+∠CAB,∠ABE=∠ABD+∠DBE,∠C=∠ABD,
∴∠CAB=∠DBE,
∵∠C=∠E=60°,
∴△ACB∽△BED,△ACE是等边三角形,
∴AE=AC=4,
∴BE=CE-BC=3,
∴△ACB与△BED的相似比为:4:3,
∴S
△ABC
:S
△BED
=16:9,S
△ABC
:S
△ABE
=1:3=16:48,
设S
△ABC
=16x,则S
△ABE
=48x,S
△BDE
=9x
∴S
△ABD
=S
△ABE
-S
△BED
=48x-9x=39x,
∴S
△ABD
:S
△BDE
=39:9=13:3.
故答案为:13:3.
考点梳理
考点
分析
点评
相似三角形的判定与性质.
拓展:由∠C=∠ABD=∠E与∠ABE=∠C+∠CAB,∠ABE=∠ABD+∠DBE,即可求得∠CAB=∠DBE,即可证得:△ACB∽△BED.
应用:由△ACB∽△BED,根据相似三角形的对应边成比例,可求得△ABC与△BDE的面积比,△ABC与△ABE的面积比,继而求得答案.
此题考查了相似三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?